Improving the production and stability of nanobodies.

IF 3.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alba Pejenaute, Laura Gálvez-Larrosa, Cristina M Segovia, Pablo Herrero-Alfonso, David Fernández-Ramos, Fernando Lopitz-Otsoa, Óscar Millet, Francesca Peccati, Gonzalo Jiménez-Osés, Gabriel Ortega-Quintanilla
{"title":"Improving the production and stability of nanobodies.","authors":"Alba Pejenaute, Laura Gálvez-Larrosa, Cristina M Segovia, Pablo Herrero-Alfonso, David Fernández-Ramos, Fernando Lopitz-Otsoa, Óscar Millet, Francesca Peccati, Gonzalo Jiménez-Osés, Gabriel Ortega-Quintanilla","doi":"10.1093/protein/gzaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Nanobodies offer unique advantages in biomedical and biotechnological applications due to their smaller size, ability to bind challenging epitopes, and affordable production using recombinant technology. However, challenges in large-scale production, stability, and solubility limit their widespread use. To address this, we use artificial intelligence tools to optimize the scaffold region of nanobodies. We apply our approach to four nanobodies against clinically relevant targets: the cytokine tumor necrosis factor alpha, the chemotherapeutic drug methotrexate, the pancreatic biomarker amylase, and the placental hormone chorionic gonadotropin. For all the nanobodies tested, we improve stability, production, and intracellular stability while maintaining antigen-binding affinity. Our results thus demonstrate the potential for using AI-driven protein engineering to enhance the properties of nanobodies, offering insights into the interplay between stability, solubility, and antigen binding. Given the high conservation of the scaffold, we propose some mutations that could directly transfer to other nanobodies, providing an easy-to-implement, generalizable engineering strategy.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaf010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanobodies offer unique advantages in biomedical and biotechnological applications due to their smaller size, ability to bind challenging epitopes, and affordable production using recombinant technology. However, challenges in large-scale production, stability, and solubility limit their widespread use. To address this, we use artificial intelligence tools to optimize the scaffold region of nanobodies. We apply our approach to four nanobodies against clinically relevant targets: the cytokine tumor necrosis factor alpha, the chemotherapeutic drug methotrexate, the pancreatic biomarker amylase, and the placental hormone chorionic gonadotropin. For all the nanobodies tested, we improve stability, production, and intracellular stability while maintaining antigen-binding affinity. Our results thus demonstrate the potential for using AI-driven protein engineering to enhance the properties of nanobodies, offering insights into the interplay between stability, solubility, and antigen binding. Given the high conservation of the scaffold, we propose some mutations that could directly transfer to other nanobodies, providing an easy-to-implement, generalizable engineering strategy.

提高纳米体的制备和稳定性。
纳米体在生物医学和生物技术应用中具有独特的优势,因为它们体积更小,能够结合具有挑战性的表位,并且使用重组技术生产成本低廉。然而,大规模生产、稳定性和溶解度方面的挑战限制了它们的广泛应用。为了解决这个问题,我们使用人工智能工具来优化纳米体的支架区域。我们将我们的方法应用于四种纳米体对抗临床相关靶点:细胞因子肿瘤坏死因子α、化疗药物甲氨蝶呤、胰腺生物标志物淀粉酶和胎盘激素绒毛膜促性腺激素。对于所有测试的纳米体,我们提高了稳定性,生产和细胞内稳定性,同时保持抗原结合亲和力。因此,我们的研究结果证明了使用人工智能驱动的蛋白质工程来增强纳米体特性的潜力,为稳定性、溶解度和抗原结合之间的相互作用提供了见解。鉴于支架的高度保守性,我们提出了一些可以直接转移到其他纳米体的突变,提供了一种易于实现的、通用的工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信