Sulayman A Lyons, Micah B S Lea, Mihir Parikh, Zhengzhang Guo, Samrin Kagdi, Abigail R Bisnauth, Jonathan R Pitino, Sabrina Ziai, Negar Mir, Aidan D Tyrrell, Yan Fu, Chuck T Chen, Adam H Metherel, Richard P Bazinet, Bin Yang, Patrick J Knerr, Jonathan D Douros, Jonathan E Campbell, Jacqueline L Beaudry
{"title":"Acute exogenous acyl-GIP treatment enhances lipid handling and fatty acid oxidation by involving brown fat.","authors":"Sulayman A Lyons, Micah B S Lea, Mihir Parikh, Zhengzhang Guo, Samrin Kagdi, Abigail R Bisnauth, Jonathan R Pitino, Sabrina Ziai, Negar Mir, Aidan D Tyrrell, Yan Fu, Chuck T Chen, Adam H Metherel, Richard P Bazinet, Bin Yang, Patrick J Knerr, Jonathan D Douros, Jonathan E Campbell, Jacqueline L Beaudry","doi":"10.1038/s44319-025-00582-7","DOIUrl":null,"url":null,"abstract":"<p><p>The contribution of glucose-dependent insulinotropic polypeptide receptor (GIPR) signalling in brown adipose tissue (BAT) remains underexplored. We studied the acute effects of exogenous acyl-GIP (1 nmol/kg) administration on whole-body lipid handling and fatty acid oxidation, using lipid tolerance tests (LTT) and indirect calorimetry, respectively. We demonstrate that in obese male mice, acute acyl-GIP administration improves lipid tolerance; however, pharmacological inhibition of GIPR, or genetic removal of GIPR globally or with the Myf5-Cre driver, completely abolishes GIP-mediated improvements in lipid tolerance, implicating GIPR in BAT. GIP-mediated improvements in lipid tolerance are associated with an increase in BAT lipid uptake, linked to increases in BAT lipoprotein lipase activity. Our data also reveal that BAT GIPR signalling is necessary for GIP-mediated increases in whole-body fatty acid oxidation, as Myf5-Cre: Gipr mice do not shift substrate oxidation upon GIP administration. Our findings suggest that BAT should be more closely considered in studies examining GIP's effects on whole-body metabolism in rodent models.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00582-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The contribution of glucose-dependent insulinotropic polypeptide receptor (GIPR) signalling in brown adipose tissue (BAT) remains underexplored. We studied the acute effects of exogenous acyl-GIP (1 nmol/kg) administration on whole-body lipid handling and fatty acid oxidation, using lipid tolerance tests (LTT) and indirect calorimetry, respectively. We demonstrate that in obese male mice, acute acyl-GIP administration improves lipid tolerance; however, pharmacological inhibition of GIPR, or genetic removal of GIPR globally or with the Myf5-Cre driver, completely abolishes GIP-mediated improvements in lipid tolerance, implicating GIPR in BAT. GIP-mediated improvements in lipid tolerance are associated with an increase in BAT lipid uptake, linked to increases in BAT lipoprotein lipase activity. Our data also reveal that BAT GIPR signalling is necessary for GIP-mediated increases in whole-body fatty acid oxidation, as Myf5-Cre: Gipr mice do not shift substrate oxidation upon GIP administration. Our findings suggest that BAT should be more closely considered in studies examining GIP's effects on whole-body metabolism in rodent models.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.