Impact of hetero-atom doping on electronic structure and reactivity of anionic Al13− cluster: a combined density functional theory and global optimization investigation
Insha Anis, Shahid Majeed, Uzmah Bilkees, Jan Mohammad Mir, Sohail Amin Malik, Manzoor Ahmad Dar
{"title":"Impact of hetero-atom doping on electronic structure and reactivity of anionic Al13− cluster: a combined density functional theory and global optimization investigation","authors":"Insha Anis, Shahid Majeed, Uzmah Bilkees, Jan Mohammad Mir, Sohail Amin Malik, Manzoor Ahmad Dar","doi":"10.1007/s11224-025-02493-8","DOIUrl":null,"url":null,"abstract":"<div><p>Using density functional theory (DFT) in combination with particle swarm optimization (PSO) algorithm, we have investigated the role of group III and 4d/5d series of transition metal dopants on the structure and electronic properties of the icosahedral anionic Al<sub>13</sub><sup>−</sup> cluster. Our results reveal that doping significantly modifies the structural characteristics of the Al<sub>13</sub><sup>−</sup> cluster leading to geometries with the dopant occupying both endohedral and apical sites. This geometric transformation leads to notable alterations in the electronic properties, as evident from the computed binding energy per atom, HOMO–LUMO gap, vertical detachment energy, and vertical electron affinity. The findings indicate that doping enhances the stability of the anionic Al<sub>13</sub><sup>−</sup> cluster. BAl<sub>12</sub><sup>−</sup> cluster and 4d- and 5d-doped Al<sub>13</sub><sup>−</sup> clusters generally depict enhanced binding energy per atom as compared to pristine Al<sub>13</sub><sup>−</sup> cluster. Oxygen adsorption studies show that O₂ binds strongly in both atop and bridged modes on all the clusters, except for NbAl₁₂⁻, RuAl₁₂⁻, and ReAl₁₂⁻ clusters, where oxygen binding occurs only in the bridged mode. Additionally, the closed-shell clusters doped with Tc, Ta, Rh, and Ir exhibited exceptionally low spin excitation energy (SPE) values of 0.01, 0.20, 0.26, and 0.37 eV, respectively, as compared to the pristine Al cluster which showed a significantly higher SPE of 1.27 eV. The low SPE values suggest that these doped clusters will be effective for O₂ binding and activation. These findings provide fundamental insights into the structure and reactivity of doped Al<sub>13</sub><sup>−</sup> clusters.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"36 5","pages":"1871 - 1884"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-025-02493-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using density functional theory (DFT) in combination with particle swarm optimization (PSO) algorithm, we have investigated the role of group III and 4d/5d series of transition metal dopants on the structure and electronic properties of the icosahedral anionic Al13− cluster. Our results reveal that doping significantly modifies the structural characteristics of the Al13− cluster leading to geometries with the dopant occupying both endohedral and apical sites. This geometric transformation leads to notable alterations in the electronic properties, as evident from the computed binding energy per atom, HOMO–LUMO gap, vertical detachment energy, and vertical electron affinity. The findings indicate that doping enhances the stability of the anionic Al13− cluster. BAl12− cluster and 4d- and 5d-doped Al13− clusters generally depict enhanced binding energy per atom as compared to pristine Al13− cluster. Oxygen adsorption studies show that O₂ binds strongly in both atop and bridged modes on all the clusters, except for NbAl₁₂⁻, RuAl₁₂⁻, and ReAl₁₂⁻ clusters, where oxygen binding occurs only in the bridged mode. Additionally, the closed-shell clusters doped with Tc, Ta, Rh, and Ir exhibited exceptionally low spin excitation energy (SPE) values of 0.01, 0.20, 0.26, and 0.37 eV, respectively, as compared to the pristine Al cluster which showed a significantly higher SPE of 1.27 eV. The low SPE values suggest that these doped clusters will be effective for O₂ binding and activation. These findings provide fundamental insights into the structure and reactivity of doped Al13− clusters.
期刊介绍:
Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry.
We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.