Danqi Zhao, Yang Wen, Zhiqiang Li, Yan Cui, Yimin Zhao, Teng-Fei Lu, Ming He, Bo Song, Zhihua Zhang
{"title":"First-principles study: enhancement of WS2 monolayer adsorption of toxic gases by doping with Cu atom","authors":"Danqi Zhao, Yang Wen, Zhiqiang Li, Yan Cui, Yimin Zhao, Teng-Fei Lu, Ming He, Bo Song, Zhihua Zhang","doi":"10.1007/s11224-025-02488-5","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional materials have the potential to be utilized as gas sensors, thereby facilitating the enhanced adsorption of toxic and hazardous gases. The adsorption properties of NO<sub>2</sub>, N<sub>2</sub>O, SO<sub>2</sub>, and H<sub>2</sub>S by WS<sub>2</sub> and Cu/WS<sub>2</sub> were investigated using first-principles calculations. In the doped system, the gases exhibit a tendency to adsorb above the Cu atoms, that is, above the S atoms that correspond to the intrinsic WS<sub>2</sub>. The results demonstrate that during the adsorption process of Cu/WS<sub>2</sub>, the gas molecules form chemical bonds with the Cu atom, thereby changing from physical adsorption to chemical adsorption. The doping of Cu atoms was observed to increase the adsorption energy, decrease the adsorption distance, increase the transferred charge, and decrease the band gap for the four gases. The dopant atoms facilitate the hybridization of the substrate with the orbitals of the gas molecules, resulting in a redistribution of charge within the adsorption system. This phenomenon is the underlying cause of the enhanced adsorption capacity observed in the doped system. The recovery times for Cu/WS<sub>2</sub>-N<sub>2</sub>O and Cu/WS<sub>2</sub>-SO<sub>2</sub> are relatively short, which is suboptimal for a robust response to the detected signal. Compared with room temperature, the adsorption of NO<sub>2</sub> and H<sub>2</sub>S by Cu/WS<sub>2</sub> can be effectively desorbed within a short time after heating. This study provides a theoretical basis for the design of WS<sub>2</sub>-type high-performance gas sensing materials for NO<sub>2</sub> and H<sub>2</sub>S.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"36 5","pages":"1585 - 1595"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-025-02488-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional materials have the potential to be utilized as gas sensors, thereby facilitating the enhanced adsorption of toxic and hazardous gases. The adsorption properties of NO2, N2O, SO2, and H2S by WS2 and Cu/WS2 were investigated using first-principles calculations. In the doped system, the gases exhibit a tendency to adsorb above the Cu atoms, that is, above the S atoms that correspond to the intrinsic WS2. The results demonstrate that during the adsorption process of Cu/WS2, the gas molecules form chemical bonds with the Cu atom, thereby changing from physical adsorption to chemical adsorption. The doping of Cu atoms was observed to increase the adsorption energy, decrease the adsorption distance, increase the transferred charge, and decrease the band gap for the four gases. The dopant atoms facilitate the hybridization of the substrate with the orbitals of the gas molecules, resulting in a redistribution of charge within the adsorption system. This phenomenon is the underlying cause of the enhanced adsorption capacity observed in the doped system. The recovery times for Cu/WS2-N2O and Cu/WS2-SO2 are relatively short, which is suboptimal for a robust response to the detected signal. Compared with room temperature, the adsorption of NO2 and H2S by Cu/WS2 can be effectively desorbed within a short time after heating. This study provides a theoretical basis for the design of WS2-type high-performance gas sensing materials for NO2 and H2S.
期刊介绍:
Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry.
We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.