Manuel Yáñez, M. Merced Montero-Campillo, Otilia Mó, Ibon Alkorta, José Elguero
{"title":"Diborane(4) as a powerful acid–base transformer","authors":"Manuel Yáñez, M. Merced Montero-Campillo, Otilia Mó, Ibon Alkorta, José Elguero","doi":"10.1007/s11224-025-02574-8","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional nitrogen bases such as ammonia, methanimine, hydrogen cyanide, and pyridine become very strong acids upon complexation with diborane(4), a very efficient electron donor whose structure was elucidated, among others, by Pople. The present study uses G4 high-level ab initio calculations and different chemical bonding tools to delve into the reasons why this fact occurs. We observe that the acidity of B<sub>2</sub>H<sub>4</sub>–N-Base complexes, in terms of the ionization constant, increases from 38 to 58 orders of magnitude compared to the corresponding free N-Bases, thus switching from different degrees of basicity to super acidic forms. Even though the formation of the complex involves breaking one of the characteristic (3c,2e) bonds of diborane(4), the neutral adduct is more stabilized the stronger the N-Base. The deprotonation of the N-Base significantly alters the structural and electronic landscape of the complex; in fact, the bridged B<sub>2</sub>H<sub>4</sub> moiety is preserved for complexes with hydrogen cyanide and pyridine but fully rearranged with ammonia and methanimine. These latter rearrangements result in anionic global minima [BH<sub>3</sub>–BHNH<sub>2</sub>]⁻ and [BH<sub>3</sub>–BHN=CH<sub>2</sub>]⁻, whose very strong B-N bonds contribute substantially to their overall stabilization and are ultimately responsible for the huge acidity enhancement observed. In all cases, the estimated acidity is equal to or higher than that of phosphoric acid, but in particular, hydrogen cyanide becomes a stronger acid than perchloric acid, which is among the strongest superacids in the gas phase.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"36 5","pages":"1627 - 1636"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11224-025-02574-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-025-02574-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional nitrogen bases such as ammonia, methanimine, hydrogen cyanide, and pyridine become very strong acids upon complexation with diborane(4), a very efficient electron donor whose structure was elucidated, among others, by Pople. The present study uses G4 high-level ab initio calculations and different chemical bonding tools to delve into the reasons why this fact occurs. We observe that the acidity of B2H4–N-Base complexes, in terms of the ionization constant, increases from 38 to 58 orders of magnitude compared to the corresponding free N-Bases, thus switching from different degrees of basicity to super acidic forms. Even though the formation of the complex involves breaking one of the characteristic (3c,2e) bonds of diborane(4), the neutral adduct is more stabilized the stronger the N-Base. The deprotonation of the N-Base significantly alters the structural and electronic landscape of the complex; in fact, the bridged B2H4 moiety is preserved for complexes with hydrogen cyanide and pyridine but fully rearranged with ammonia and methanimine. These latter rearrangements result in anionic global minima [BH3–BHNH2]⁻ and [BH3–BHN=CH2]⁻, whose very strong B-N bonds contribute substantially to their overall stabilization and are ultimately responsible for the huge acidity enhancement observed. In all cases, the estimated acidity is equal to or higher than that of phosphoric acid, but in particular, hydrogen cyanide becomes a stronger acid than perchloric acid, which is among the strongest superacids in the gas phase.
期刊介绍:
Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry.
We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.