{"title":"Boosting SAPO-34 catalyst longevity and activity in MTO processes via indium oxide doping: an experimental and theoretical study","authors":"Armin Abbasi, Jafar Towfighi Darian, Farshid Sobhani Bazghaleh and Masoud Safari Yazd","doi":"10.1039/D5RE00183H","DOIUrl":null,"url":null,"abstract":"<p >Metal oxides play a critical role in controlling coke formation, balancing reaction pathways, and enhancing the performance and durability of SAPO-34 catalysts in the methanol-to-olefin (MTO) process. This study focuses on indium oxide (In<small><sub>2</sub></small>O<small><sub>3</sub></small>) doping as a novel approach to address coke formation and extend catalyst lifespan. A comprehensive experimental and theoretical methodology was adopted, including detailed catalyst characterization, catalytic performance testing, and molecular dynamics (MD) simulations. Structural analyses confirmed that the CHA framework of SAPO-34 is preserved after doping, with modifications such as reduced crystallite size and increased mesoporosity, which enhance active site accessibility. Physicochemical characterization revealed that nitrogen adsorption showed increased mesopore volume while NH<small><sub>3</sub></small>-TPD analysis indicated a balanced acid site redistribution in In-doped SAPO-34 (SP-I), collectively enhancing intermediate species stability and catalytic activity. MD simulations provided a mechanistic understanding of the In<small><sub>2</sub></small>O<small><sub>3</sub></small> impact, revealing its ability to suppress coke precursor (CHO-<em>θ</em>) formation, facilitate carbon removal <em>via</em> CO<small><sub>2</sub></small> activation and the reverse Boudouard reaction, and enhance reaction reversibility. Catalytic performance testing validated these findings, with SP-I achieving prolonged activity, higher selectivity for light olefins (up to 80.3%), and greater resistance to deactivation compared to pristine SAPO-34. These findings underscore the efficacy of In<small><sub>2</sub></small>O<small><sub>3</sub></small> as a dopant for improving SAPO-34 catalysts and offer insights into the development of sustainable and efficient catalysts for industrial MTO applications.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2412-2423"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00183h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal oxides play a critical role in controlling coke formation, balancing reaction pathways, and enhancing the performance and durability of SAPO-34 catalysts in the methanol-to-olefin (MTO) process. This study focuses on indium oxide (In2O3) doping as a novel approach to address coke formation and extend catalyst lifespan. A comprehensive experimental and theoretical methodology was adopted, including detailed catalyst characterization, catalytic performance testing, and molecular dynamics (MD) simulations. Structural analyses confirmed that the CHA framework of SAPO-34 is preserved after doping, with modifications such as reduced crystallite size and increased mesoporosity, which enhance active site accessibility. Physicochemical characterization revealed that nitrogen adsorption showed increased mesopore volume while NH3-TPD analysis indicated a balanced acid site redistribution in In-doped SAPO-34 (SP-I), collectively enhancing intermediate species stability and catalytic activity. MD simulations provided a mechanistic understanding of the In2O3 impact, revealing its ability to suppress coke precursor (CHO-θ) formation, facilitate carbon removal via CO2 activation and the reverse Boudouard reaction, and enhance reaction reversibility. Catalytic performance testing validated these findings, with SP-I achieving prolonged activity, higher selectivity for light olefins (up to 80.3%), and greater resistance to deactivation compared to pristine SAPO-34. These findings underscore the efficacy of In2O3 as a dopant for improving SAPO-34 catalysts and offer insights into the development of sustainable and efficient catalysts for industrial MTO applications.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.