Integrated electrified reactor system for efficient CO2-to-syngas conversion via e-methanation and e-POM

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Suganuma Hiroyasu, Ryo Watanabe, Priyanka Verma, Hiroshi Akama and Choji Fukuhara
{"title":"Integrated electrified reactor system for efficient CO2-to-syngas conversion via e-methanation and e-POM","authors":"Suganuma Hiroyasu, Ryo Watanabe, Priyanka Verma, Hiroshi Akama and Choji Fukuhara","doi":"10.1039/D5RE00196J","DOIUrl":null,"url":null,"abstract":"<p >This study presents the development of an electrically driven dual-stage reactor system for efficient syngas production <em>via</em> integrated CO<small><sub>2</sub></small> methanation and methane partial oxidation. A spiral-shaped metallic catalyst structure enables localized Joule heating by direct current, allowing rapid and energy-efficient temperature control. In the first stage, the Ru/CeO<small><sub>2</sub></small> catalyst achieved a high CO<small><sub>2</sub></small> conversion of 78% and CH<small><sub>4</sub></small> selectivity exceeding approximately 100% under low input power (10 W). In the second stage, the Ni/CeO<small><sub>2</sub></small> catalyst facilitated CH<small><sub>4</sub></small> partial oxidation with 91% CH<small><sub>4</sub></small> conversion and syngas production exhibiting an H<small><sub>2</sub></small>/CO ratio of approximately 2.8. By shortening the catalyst length and increasing flow rates, the system further enhanced heat utilization and CO yield. Notably, while the standalone partial oxidation system suffered from carbon deposition, the integrated configuration demonstrated improved stability due to the presence of residual hydrogen and water from the methanation stage, which effectively suppressed coke formation. To our knowledge, this work is the first to experimentally demonstrate a fully electrified, tandem CO<small><sub>2</sub></small>-to-syngas process combining <em>e</em>-methanation and <em>e</em>-POM in a compact system, offering a promising platform for renewable-energy-compatible chemical conversion.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2264-2272"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00196j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the development of an electrically driven dual-stage reactor system for efficient syngas production via integrated CO2 methanation and methane partial oxidation. A spiral-shaped metallic catalyst structure enables localized Joule heating by direct current, allowing rapid and energy-efficient temperature control. In the first stage, the Ru/CeO2 catalyst achieved a high CO2 conversion of 78% and CH4 selectivity exceeding approximately 100% under low input power (10 W). In the second stage, the Ni/CeO2 catalyst facilitated CH4 partial oxidation with 91% CH4 conversion and syngas production exhibiting an H2/CO ratio of approximately 2.8. By shortening the catalyst length and increasing flow rates, the system further enhanced heat utilization and CO yield. Notably, while the standalone partial oxidation system suffered from carbon deposition, the integrated configuration demonstrated improved stability due to the presence of residual hydrogen and water from the methanation stage, which effectively suppressed coke formation. To our knowledge, this work is the first to experimentally demonstrate a fully electrified, tandem CO2-to-syngas process combining e-methanation and e-POM in a compact system, offering a promising platform for renewable-energy-compatible chemical conversion.

Abstract Image

集成电气化反应器系统,通过e-甲烷化和e-POM将二氧化碳高效转化为合成气
本研究提出了一种电力驱动双级反应器系统的开发,该系统通过集成二氧化碳甲烷化和甲烷部分氧化来高效生产合成气。螺旋形金属催化剂结构可通过直流电实现局部焦耳加热,从而实现快速节能的温度控制。在第一阶段,Ru/CeO2催化剂在低输入功率(10 W)下实现了78%的高CO2转化率和超过100%的CH4选择性。在第二阶段,Ni/CeO2催化剂促进CH4部分氧化,CH4转化率为91%,合成气产量为H2/CO约2.8。通过缩短催化剂长度和提高流量,系统进一步提高了热利用率和CO产率。值得注意的是,虽然独立的部分氧化系统存在碳沉积问题,但由于甲烷化阶段残留的氢和水的存在,集成配置显示出更好的稳定性,这有效地抑制了焦炭的形成。据我们所知,这项工作首次通过实验证明了在一个紧凑的系统中结合e-甲烷化和e-POM的完全电气化、串联二氧化碳制合成气过程,为可再生能源兼容的化学转化提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信