Recent advancements in the electrocatalytic conversion of furfural to 2-methylfuran

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Arvind Singh Chauhan, Omvir Singh, Amika, Reena Sharma, Deepak Kumar, Dinesh Kumar and Anil Dhanola
{"title":"Recent advancements in the electrocatalytic conversion of furfural to 2-methylfuran","authors":"Arvind Singh Chauhan, Omvir Singh, Amika, Reena Sharma, Deepak Kumar, Dinesh Kumar and Anil Dhanola","doi":"10.1039/D5RE00258C","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical reduction of furfural to 2-methylfuran (MF) offers a green and efficient route for producing high-value biofuels and chemicals from biomass. This review critically examines the recent progress in the catalyst development, mechanistic understanding, and interface engineering strategies that enhance the selectivity for MF while mitigating side reactions such as the hydrogen evolution reaction (HER). Key factors including electrode materials, electrolyte pH, applied potential, and adsorption configuration are explored in detail. Although advances in operando characterization and theoretical modeling have begun to reveal the active sites and reaction pathways, challenges persist in achieving high selectivity and scalability. We identify the current limitations, such as the competing reactions, unclear active sites, and limited electrode diversity, and propose targeted solutions including dynamic interface tuning, molecular modifiers, and rational catalyst design. This review highlights the potential of electrocatalytic conversion of furfural to MF as a sustainable platform for future green chemical manufacturing.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2201-2224"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00258c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of furfural to 2-methylfuran (MF) offers a green and efficient route for producing high-value biofuels and chemicals from biomass. This review critically examines the recent progress in the catalyst development, mechanistic understanding, and interface engineering strategies that enhance the selectivity for MF while mitigating side reactions such as the hydrogen evolution reaction (HER). Key factors including electrode materials, electrolyte pH, applied potential, and adsorption configuration are explored in detail. Although advances in operando characterization and theoretical modeling have begun to reveal the active sites and reaction pathways, challenges persist in achieving high selectivity and scalability. We identify the current limitations, such as the competing reactions, unclear active sites, and limited electrode diversity, and propose targeted solutions including dynamic interface tuning, molecular modifiers, and rational catalyst design. This review highlights the potential of electrocatalytic conversion of furfural to MF as a sustainable platform for future green chemical manufacturing.

Abstract Image

糠醛电催化转化2-甲基呋喃的研究进展
糠醛电化学还原为2-甲基呋喃(MF)为从生物质中生产高价值生物燃料和化学品提供了一条绿色高效的途径。本文综述了催化剂开发、机理理解和界面工程策略方面的最新进展,以提高MF的选择性,同时减轻氢析反应(HER)等副反应。详细探讨了电极材料、电解质pH、应用电位和吸附构型等关键因素。尽管在operando表征和理论建模方面的进展已经开始揭示活性位点和反应途径,但在实现高选择性和可扩展性方面仍然存在挑战。我们确定了当前的局限性,如竞争反应、活性位点不明确和电极多样性有限,并提出了有针对性的解决方案,包括动态界面调整、分子修饰剂和合理的催化剂设计。这篇综述强调了糠醛电催化转化为MF作为未来绿色化学制造的可持续平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信