Jianing Wu, Vipin Chandra Kalia, Jung-Kul Lee and Chunjie Gong
{"title":"Revolutionizing chlorogenic acid production: cutting-edge synthetic biology strategies","authors":"Jianing Wu, Vipin Chandra Kalia, Jung-Kul Lee and Chunjie Gong","doi":"10.1039/D5RE00204D","DOIUrl":null,"url":null,"abstract":"<p >Chlorogenic acid, a bioactive compound with significant pharmacological and industrial value, is predominantly sourced through conventional extraction methods that exhibit resource dependency, high cost, inefficiencies, and environmental concerns. To address the dual challenges of surging market demand and environmental preservation, synthetic biology-driven microbial fermentation emerges as a pivotal sustainable strategy to overcome traditional production bottlenecks. Through rational design of metabolic networks, development of modular co-culture systems, and integration of intelligent regulation tools, efficient, resource-conserving, and environmentally benign chlorogenic acid production can be achieved. This study provides an innovative paradigm for the biomanufacturing of high-value chemicals.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 10","pages":" 2190-2200"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00204d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorogenic acid, a bioactive compound with significant pharmacological and industrial value, is predominantly sourced through conventional extraction methods that exhibit resource dependency, high cost, inefficiencies, and environmental concerns. To address the dual challenges of surging market demand and environmental preservation, synthetic biology-driven microbial fermentation emerges as a pivotal sustainable strategy to overcome traditional production bottlenecks. Through rational design of metabolic networks, development of modular co-culture systems, and integration of intelligent regulation tools, efficient, resource-conserving, and environmentally benign chlorogenic acid production can be achieved. This study provides an innovative paradigm for the biomanufacturing of high-value chemicals.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.