Larissa Madureira Pacholak do Espírito Santo , Ana Maura Novak , Maria Clara Corrêa Gomes Palma , Guilherme Lanzi Sassaki , Giulia Herbst , Luis Ricardo Shigueyuki Kanda , Fernando Augusto Pedersen Voll
{"title":"Liquid-liquid equilibrium of systems containing acylglycerols from olive oil, glycerol and tert-butanol","authors":"Larissa Madureira Pacholak do Espírito Santo , Ana Maura Novak , Maria Clara Corrêa Gomes Palma , Guilherme Lanzi Sassaki , Giulia Herbst , Luis Ricardo Shigueyuki Kanda , Fernando Augusto Pedersen Voll","doi":"10.1016/j.jct.2025.107583","DOIUrl":null,"url":null,"abstract":"<div><div>Studies indicate that consuming oils rich in diacylglycerol instead of triacylglycerol can prevent health problems commonly related to the consumption of fats, such as obesity and cardiovascular disease. For that reason, production and purification of diacylglycerol have received great attention. This work reports experimental results and thermodynamic modeling of liquid-liquid equilibrium of systems containing mono-, di-, and triacylclycerols from olive oil, glycerol and tert-butanol. UNIQUAC and NRTL models were used to calculate the phase equilibria and were well fitted to experimental data with root mean square deviations below 2 wt% for all studied systems. The results obtained in this work indicate the feasibility of diacylglycerol separation from other acylglycerols through liquid-liquid extraction using glycerol and tert-butanol as solvents.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"212 ","pages":"Article 107583"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425001375","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Studies indicate that consuming oils rich in diacylglycerol instead of triacylglycerol can prevent health problems commonly related to the consumption of fats, such as obesity and cardiovascular disease. For that reason, production and purification of diacylglycerol have received great attention. This work reports experimental results and thermodynamic modeling of liquid-liquid equilibrium of systems containing mono-, di-, and triacylclycerols from olive oil, glycerol and tert-butanol. UNIQUAC and NRTL models were used to calculate the phase equilibria and were well fitted to experimental data with root mean square deviations below 2 wt% for all studied systems. The results obtained in this work indicate the feasibility of diacylglycerol separation from other acylglycerols through liquid-liquid extraction using glycerol and tert-butanol as solvents.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.