Solving two-phase heat exchanger equations by using the finite element method

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Jose M. Chaquet , Pedro Galán del Sastre
{"title":"Solving two-phase heat exchanger equations by using the finite element method","authors":"Jose M. Chaquet ,&nbsp;Pedro Galán del Sastre","doi":"10.1016/j.finel.2025.104462","DOIUrl":null,"url":null,"abstract":"<div><div>Heat exchangers (HEX) are widely used in a large number of industrial processes, as well as on-board auxiliary devices. One way to increase HEX thermal effectiveness, and therefore reduce weight, is to use phase-change processes in one or both working fluids. There are simplified models in the literature that provide HEX temperature fields, useful in the early design phases. However, these models assume single-phase fluids. This work generalizes the HEX equations for different arrangements (parallel, counter and cross flow configurations) considering vaporization (evaporation or boiling) or condensation processes. The application of the finite element method (FEM) is also described to obtain a numerical approximation of the solution in an efficient manner. The proposed method provides a general framework where the application of specific heat transfer coefficients correlations or fluid properties is straightforward. As a practical application, several operating conditions (number of transfer units until 5 and mass flow ratios between 0.1 and 1) and arrangements (parallelflow, counterflow and unmixed-unmixed crossflow) of a simplified HEX using coolant R123 and liquid water as working fluids are analyzed where the heat transfer coefficient depends on the vapor fraction. R123 coolant flows through 2 mm diameter pipes, in liquid phase at the HEX inlet and undergoing a complete or partial evaporation process depending on the operating point.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104462"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001519","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Heat exchangers (HEX) are widely used in a large number of industrial processes, as well as on-board auxiliary devices. One way to increase HEX thermal effectiveness, and therefore reduce weight, is to use phase-change processes in one or both working fluids. There are simplified models in the literature that provide HEX temperature fields, useful in the early design phases. However, these models assume single-phase fluids. This work generalizes the HEX equations for different arrangements (parallel, counter and cross flow configurations) considering vaporization (evaporation or boiling) or condensation processes. The application of the finite element method (FEM) is also described to obtain a numerical approximation of the solution in an efficient manner. The proposed method provides a general framework where the application of specific heat transfer coefficients correlations or fluid properties is straightforward. As a practical application, several operating conditions (number of transfer units until 5 and mass flow ratios between 0.1 and 1) and arrangements (parallelflow, counterflow and unmixed-unmixed crossflow) of a simplified HEX using coolant R123 and liquid water as working fluids are analyzed where the heat transfer coefficient depends on the vapor fraction. R123 coolant flows through 2 mm diameter pipes, in liquid phase at the HEX inlet and undergoing a complete or partial evaporation process depending on the operating point.
用有限元法求解两相换热器方程
热交换器(HEX)广泛应用于大量的工业过程,以及机载辅助设备。提高HEX热效率从而减轻重量的一种方法是在一种或两种工作流体中使用相变过程。文献中有提供HEX温度场的简化模型,在早期设计阶段很有用。然而,这些模型假定为单相流体。这项工作将HEX方程推广到考虑汽化(蒸发或沸腾)或冷凝过程的不同安排(平行,逆流和交叉流配置)。本文还介绍了有限元法的应用,以有效地求得解的数值近似。所提出的方法提供了一个总体框架,其中应用比传热系数的相关性或流体性质是直接的。作为实际应用,分析了使用冷却剂R123和液态水作为工质的简化HEX的几种操作条件(传递单元数直到5,质量流量比在0.1和1之间)和布置(平行流,逆流和非混合-非混合横流),其中传热系数取决于蒸汽分数。R123冷却剂流经直径2mm的管道,在HEX入口处处于液相状态,并根据工作点进行完全或部分蒸发过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信