k-Universality of Regular Languages

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Duncan Adamson , Pamela Fleischmann , Annika Huch , Tore Koß , Florin Manea , Dirk Nowotka
{"title":"k-Universality of Regular Languages","authors":"Duncan Adamson ,&nbsp;Pamela Fleischmann ,&nbsp;Annika Huch ,&nbsp;Tore Koß ,&nbsp;Florin Manea ,&nbsp;Dirk Nowotka","doi":"10.1016/j.ic.2025.105357","DOIUrl":null,"url":null,"abstract":"<div><div>A subsequence of a word <em>w</em> is a word <em>u</em> such that <span><math><mi>u</mi><mo>=</mo><mi>w</mi><mo>[</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo><mi>w</mi><mo>[</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo><mo>…</mo><mi>w</mi><mo>[</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></math></span>, for some set of indices <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>…</mo><mo>&lt;</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mo>|</mo><mi>w</mi><mo>|</mo></math></span>. A word <em>w</em> is <em>k</em>-subsequence universal over an alphabet Σ if every word in <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> appears in <em>w</em> as a subsequence. In this paper, we study the intersection between the set of <em>k</em>-subsequence universal words over some alphabet Σ and regular languages over Σ. We call a regular language <em>L k-</em>∃<em>-subsequence universal</em> if there exists a <em>k</em>-subsequence universal word in <em>L</em>, and <em>k-</em>∀<em>-subsequence universal</em> if every word of <em>L</em> is <em>k</em>-subsequence universal. We give algorithms solving the problems of deciding if a given regular language, represented by a finite automaton recognising it, is <em>k-</em>∃<em>-subsequence universal</em> and, respectively, if it is <em>k-</em>∀<em>-subsequence universal</em>, for a given <em>k</em>. The algorithms are FPT w.r.t. the size of the input alphabet, and their run-time does not depend on <em>k</em>; they run in polynomial time in the number <em>n</em> of states of the input automaton when the size of the input alphabet is <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>. Moreover, we show that the problem of deciding if a given regular language is <em>k-</em>∃<em>-subsequence universal</em> is NP-complete, when the language is over a large alphabet. Further, we provide algorithms for counting the number of <em>k</em>-subsequence universal words (paths) accepted by a given deterministic (respectively, non-deterministic) finite automaton, and ranking an input word (path) within the set of <em>k</em>-subsequence universal words accepted by a given finite automaton.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"307 ","pages":"Article 105357"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540125000938","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A subsequence of a word w is a word u such that u=w[i1]w[i2]w[ik], for some set of indices 1i1<i2<<ik|w|. A word w is k-subsequence universal over an alphabet Σ if every word in Σk appears in w as a subsequence. In this paper, we study the intersection between the set of k-subsequence universal words over some alphabet Σ and regular languages over Σ. We call a regular language L k--subsequence universal if there exists a k-subsequence universal word in L, and k--subsequence universal if every word of L is k-subsequence universal. We give algorithms solving the problems of deciding if a given regular language, represented by a finite automaton recognising it, is k--subsequence universal and, respectively, if it is k--subsequence universal, for a given k. The algorithms are FPT w.r.t. the size of the input alphabet, and their run-time does not depend on k; they run in polynomial time in the number n of states of the input automaton when the size of the input alphabet is O(logn). Moreover, we show that the problem of deciding if a given regular language is k--subsequence universal is NP-complete, when the language is over a large alphabet. Further, we provide algorithms for counting the number of k-subsequence universal words (paths) accepted by a given deterministic (respectively, non-deterministic) finite automaton, and ranking an input word (path) within the set of k-subsequence universal words accepted by a given finite automaton.
k-规则语言的普遍性
单词w的子序列是一个单词u,使得u=w[i1]w[i2]…w[ik],对于某些索引集1≤i1<;i2<;…<ik≤|w|。如果Σk中的每个单词都作为子序列出现在w中,那么单词w就是整个字母表Σ上的k-子序列。在本文中,我们研究了一些字母表Σ上的k-子序列全称词集与Σ上的规则语言集之间的交集。如果在L中存在一个k-子序列全称词,我们称正则语言为k-∃-子序列全称词;如果L的每个词都是k-子序列全称词,我们称正则语言为k-∃-子序列全称词。我们给出了一些算法来解决以下问题:对于给定的k,决定一个给定的正则语言(由一个有限自动机识别它)是否为k-∃-子序列全域,以及是否为k-∀-子序列全域。这些算法是FPT .r.t.输入字母的大小,它们的运行时间不依赖于k;当输入字母的大小为O(log log n)时,它们在输入自动机的n个状态下以多项式时间运行。此外,我们证明了判定给定正则语言是否为k-∃-子序列全称的问题是np完全的,当该语言在一个大字母表上时。此外,我们提供了计算给定确定性(分别是非确定性)有限自动机接受的k-子序列通用词(路径)数量的算法,并在给定有限自动机接受的k-子序列通用词集合中对输入词(路径)进行排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信