{"title":"Optimal control of the nonlinear stochastic Fokker–Planck equation","authors":"Ben Hambly , Philipp Jettkant","doi":"10.1016/j.spa.2025.104774","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a control problem for the nonlinear stochastic Fokker–Planck equation. This equation describes the evolution of the distribution of nonlocally interacting particles affected by a common source of noise. The system is directed by a controller that acts on the drift term with the goal of minimising a cost functional. We establish the well-posedness of the state equation, prove the existence of optimal controls, and formulate a stochastic maximum principle (SMP) that provides necessary and sufficient optimality conditions for the control problem. The adjoint process arising in the SMP is characterised by a nonlocal (semi)linear backward SPDE for which we study existence and uniqueness. We also rigorously connect the control problem for the nonlinear stochastic Fokker–Planck equation to the control of the corresponding McKean–Vlasov SDE that describes the motion of a representative particle. Our work extends existing results for the control of the Fokker–Planck equation to nonlinear and stochastic dynamics. In particular, the sufficient SMP, which we obtain by exploiting the special structure of the Fokker–Planck equation, seems to be novel even in the linear deterministic setting. We illustrate our results with an application to a model of government interventions in financial systems, supplemented by numerical illustrations.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"191 ","pages":"Article 104774"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925002182","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a control problem for the nonlinear stochastic Fokker–Planck equation. This equation describes the evolution of the distribution of nonlocally interacting particles affected by a common source of noise. The system is directed by a controller that acts on the drift term with the goal of minimising a cost functional. We establish the well-posedness of the state equation, prove the existence of optimal controls, and formulate a stochastic maximum principle (SMP) that provides necessary and sufficient optimality conditions for the control problem. The adjoint process arising in the SMP is characterised by a nonlocal (semi)linear backward SPDE for which we study existence and uniqueness. We also rigorously connect the control problem for the nonlinear stochastic Fokker–Planck equation to the control of the corresponding McKean–Vlasov SDE that describes the motion of a representative particle. Our work extends existing results for the control of the Fokker–Planck equation to nonlinear and stochastic dynamics. In particular, the sufficient SMP, which we obtain by exploiting the special structure of the Fokker–Planck equation, seems to be novel even in the linear deterministic setting. We illustrate our results with an application to a model of government interventions in financial systems, supplemented by numerical illustrations.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.