{"title":"Engineering ZnS quantum dots for photocatalysis: Synthesis, modifications, and multifunctional applications","authors":"Jingjing Zhang , Kezhen Qi , Rosaiah Pitcheri , Chongxiong Duan","doi":"10.1016/j.jphotochemrev.2025.100722","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalysis is an advanced technology that efficiently converts solar energy into chemical energy, attracting widespread attention in environmental remediation, energy development, and biomedical applications. ZnS quantum dots (ZnS QDs), as a representative wide-bandgap semiconductor, exhibit unique quantum confinement effects, tunable optoelectronic properties, and a high specific surface area, making them a promising metal sulfide photocatalyst. This review systematically summarizes recent advances in ZnS QD-based photocatalytic systems, with a focus on material design strategies and multifunctional applications. First, the fundamental mechanisms of ZnS QDs in photocatalysis are introduced, followed by a discussion on their synthesis methods. Several strategies for enhancing the photocatalytic activity of ZnS QDs, including surface modification, elemental doping, heterojunction formation, and coupling with carbon or organic materials, are discussed in detail. Furthermore, we comprehensively review the applications of ZnS QDs in the photocatalytic degradation of pollutants, water splitting for H<sub>2</sub> production, CO<sub>2</sub> reduction, N<sub>2</sub> fixation, antimicrobial activity, and organic synthesis, highlighting their breakthroughs in biomedical field, such as near-infrared-activated antimicrobial systems and tumor-specific photodynamic/photothermal therapy. Finally, by analyzing the current challenges of ZnS QDs in photocatalysis, we propose three future research directions to promote their practical applications in sustainable energy, environmental restoration, and precision medicine.</div></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"65 ","pages":"Article 100722"},"PeriodicalIF":13.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556725000346","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalysis is an advanced technology that efficiently converts solar energy into chemical energy, attracting widespread attention in environmental remediation, energy development, and biomedical applications. ZnS quantum dots (ZnS QDs), as a representative wide-bandgap semiconductor, exhibit unique quantum confinement effects, tunable optoelectronic properties, and a high specific surface area, making them a promising metal sulfide photocatalyst. This review systematically summarizes recent advances in ZnS QD-based photocatalytic systems, with a focus on material design strategies and multifunctional applications. First, the fundamental mechanisms of ZnS QDs in photocatalysis are introduced, followed by a discussion on their synthesis methods. Several strategies for enhancing the photocatalytic activity of ZnS QDs, including surface modification, elemental doping, heterojunction formation, and coupling with carbon or organic materials, are discussed in detail. Furthermore, we comprehensively review the applications of ZnS QDs in the photocatalytic degradation of pollutants, water splitting for H2 production, CO2 reduction, N2 fixation, antimicrobial activity, and organic synthesis, highlighting their breakthroughs in biomedical field, such as near-infrared-activated antimicrobial systems and tumor-specific photodynamic/photothermal therapy. Finally, by analyzing the current challenges of ZnS QDs in photocatalysis, we propose three future research directions to promote their practical applications in sustainable energy, environmental restoration, and precision medicine.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.