Using machine learning classifiers together with discrimination diagrams for validation of rock classification labels

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Malte Mues , Dennis Kraemer , David M. Ernst Styn
{"title":"Using machine learning classifiers together with discrimination diagrams for validation of rock classification labels","authors":"Malte Mues ,&nbsp;Dennis Kraemer ,&nbsp;David M. Ernst Styn","doi":"10.1016/j.acags.2025.100288","DOIUrl":null,"url":null,"abstract":"<div><div>Rock classification based on chemical components is a common task in the geochemical domain. Literature recommends the Total Alkali and Silica (TAS) discrimination diagram for classifying igneous volcanic rocks by the sum of Na<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O and K<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O in relation to SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> contents. This paper comparatively applies the TAS diagram and machine learning classification techniques to a collection of volcanic rocks from the <span>GEOROC</span> database. The study demonstrates a mismatch between the rock type labeled by experts in the database and rock types assigned by the TAS diagram. Despite this discrepancy, the experiments show that support vector machines are particularly promising for building decision systems for rock classification. Random forests, multi-layer perceptrons and K nearest neighbors are less suitable as rock classifiers in the study.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"28 ","pages":"Article 100288"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Rock classification based on chemical components is a common task in the geochemical domain. Literature recommends the Total Alkali and Silica (TAS) discrimination diagram for classifying igneous volcanic rocks by the sum of Na2O and K2O in relation to SiO2 contents. This paper comparatively applies the TAS diagram and machine learning classification techniques to a collection of volcanic rocks from the GEOROC database. The study demonstrates a mismatch between the rock type labeled by experts in the database and rock types assigned by the TAS diagram. Despite this discrepancy, the experiments show that support vector machines are particularly promising for building decision systems for rock classification. Random forests, multi-layer perceptrons and K nearest neighbors are less suitable as rock classifiers in the study.
利用机器学习分类器和判别图对岩石分类标签进行验证
基于化学成分的岩石分类是地球化学领域的一项常见任务。文献推荐用总碱硅(Total Alkali and Silica, TAS)判别图,通过Na2O和K2O与SiO2含量的总和对火成岩进行分类。本文将TAS图和机器学习分类技术对比应用于GEOROC数据库中的火山岩集合。该研究表明,数据库中专家标记的岩石类型与TAS图分配的岩石类型之间存在不匹配。尽管存在这种差异,但实验表明,支持向量机在构建岩石分类决策系统方面特别有前途。随机森林、多层感知器和K近邻都不适合作为岩石分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信