{"title":"Histone deacetylase inhibitors suppress retinal angiogenesis by preventing endothelial cell proliferation and accelerating VEGF degradation","authors":"Akane Morita, Kanako Takahashi, Naoto Iizuka, Tsutomu Nakahara","doi":"10.1016/j.jphs.2025.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>Inhibitors of histone deacetylases (HDACs) suppress retinal angiogenesis by interrupting the vascular endothelial growth factor (VEGF)-mammalian target of rapamycin complex 1 (mTORC1) pathway in proliferating endothelial cells. To investigate the underlying mechanisms, we examined the effects of valproic acid (VPA) and vorinostat on the distribution of VEGF protein and phosphorylated S6 protein, an indicator of mTORC1 activity, in the neonatal mouse retina, an experimental model of retinal angiogenesis. Newborn mice were subcutaneously injected with VPA, vorinostat, or vehicle once daily from postnatal day (P) 0 to P3. Their eyes were collected at P4. Compared to vehicle-treated mice, retinal vascularization was delayed, and the number of proliferating vascular cells was reduced in front of the retinal vasculature in VPA- and vorinostat-treated mice. In P4 mice, a single injection of VPA or vorinostat reduced VEGF expression on the retinal surface at 2 and 6 h after injection. Both drugs reduced mTORC1 activity in proliferating endothelial cells. The proteasome inhibitor, MG132, suppressed the VPA- and vorinostat-induced reduction in VEGF expression on the retinal surface. These results suggest that HDAC inhibitors suppress retinal angiogenesis by preventing endothelial cell proliferation and accelerating VEGF protein degradation in a proteasome-dependent manner.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"159 4","pages":"Pages 268-278"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S134786132500091X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibitors of histone deacetylases (HDACs) suppress retinal angiogenesis by interrupting the vascular endothelial growth factor (VEGF)-mammalian target of rapamycin complex 1 (mTORC1) pathway in proliferating endothelial cells. To investigate the underlying mechanisms, we examined the effects of valproic acid (VPA) and vorinostat on the distribution of VEGF protein and phosphorylated S6 protein, an indicator of mTORC1 activity, in the neonatal mouse retina, an experimental model of retinal angiogenesis. Newborn mice were subcutaneously injected with VPA, vorinostat, or vehicle once daily from postnatal day (P) 0 to P3. Their eyes were collected at P4. Compared to vehicle-treated mice, retinal vascularization was delayed, and the number of proliferating vascular cells was reduced in front of the retinal vasculature in VPA- and vorinostat-treated mice. In P4 mice, a single injection of VPA or vorinostat reduced VEGF expression on the retinal surface at 2 and 6 h after injection. Both drugs reduced mTORC1 activity in proliferating endothelial cells. The proteasome inhibitor, MG132, suppressed the VPA- and vorinostat-induced reduction in VEGF expression on the retinal surface. These results suggest that HDAC inhibitors suppress retinal angiogenesis by preventing endothelial cell proliferation and accelerating VEGF protein degradation in a proteasome-dependent manner.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.