{"title":"Endothelial NLRP3-mediated pyroptosis induces blood-brain barrier and neuronal damage in Huntington's disease models","authors":"Jing Cai , Wenshuang Ji , Peng Liu , Libo Zou","doi":"10.1016/j.jphs.2025.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>The NLRP3 inflammasome is primarily expressed and activated in microglial and endothelial cells. Extensive research has been conducted on the activation of NLRP3 inflammasomes by microglial cells leading to pyroptosis. However, there have been no reports on the activation of NLRP3 inflammasomes in brain vascular endothelial cells in patients with Huntington's disease (HD) or HD animal models, leading to blood-brain barrier (BBB) disruption. We herein found that BBB leakage increased and the expression of tight junction proteins significantly decreased after transfecting the mutant Huntingtin protein (mHtt) Q74 plasmid into the mouse brain microvascular endothelial cell line bEnd.3. mHtt promoted the activation of NLRP3 by brain vascular endothelial cells, and increased the expression of the pyroptosis-related proteins. This resulted in a decrease in the expression of the NeuN in the brain of hHTT130 transgenic mice. Furthermore, by downregulating <em>NLRP3</em> in Q74-transfected bEnd.3 cells or in hHTT130 mouse brain vascular endothelial cells, BBB disruption and endothelial cell pyroptosis were alleviated, the number of surviving neurons was significantly increased. In conclusion, mHtt can activate the NLRP3 inflammasome in brain microvascular endothelial cells to induce endothelial cell pyroptosis, thereby disrupting the function of the BBB, leading to neuronal damage.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"159 4","pages":"Pages 256-267"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000891","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The NLRP3 inflammasome is primarily expressed and activated in microglial and endothelial cells. Extensive research has been conducted on the activation of NLRP3 inflammasomes by microglial cells leading to pyroptosis. However, there have been no reports on the activation of NLRP3 inflammasomes in brain vascular endothelial cells in patients with Huntington's disease (HD) or HD animal models, leading to blood-brain barrier (BBB) disruption. We herein found that BBB leakage increased and the expression of tight junction proteins significantly decreased after transfecting the mutant Huntingtin protein (mHtt) Q74 plasmid into the mouse brain microvascular endothelial cell line bEnd.3. mHtt promoted the activation of NLRP3 by brain vascular endothelial cells, and increased the expression of the pyroptosis-related proteins. This resulted in a decrease in the expression of the NeuN in the brain of hHTT130 transgenic mice. Furthermore, by downregulating NLRP3 in Q74-transfected bEnd.3 cells or in hHTT130 mouse brain vascular endothelial cells, BBB disruption and endothelial cell pyroptosis were alleviated, the number of surviving neurons was significantly increased. In conclusion, mHtt can activate the NLRP3 inflammasome in brain microvascular endothelial cells to induce endothelial cell pyroptosis, thereby disrupting the function of the BBB, leading to neuronal damage.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.