Constrained multi-agent evasion using deep reinforcement learning

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bowei Yan , Runle Du , Xiaojun Ban , Di Zhou
{"title":"Constrained multi-agent evasion using deep reinforcement learning","authors":"Bowei Yan ,&nbsp;Runle Du ,&nbsp;Xiaojun Ban ,&nbsp;Di Zhou","doi":"10.1016/j.neucom.2025.131550","DOIUrl":null,"url":null,"abstract":"<div><div>Designing effective evasion strategies in pursuit–evasion scenarios is challenging, particularly when the pursuer’s model is unknown and inaccessible. This limitation hinders the application of conventional evasion policy design methods. To overcome this challenge, especially when evaders have constrained maneuverability against unrestricted pursuers, we propose a novel multi-agent evasion algorithm based on deep reinforcement learning. Our approach employs a staged learning framework, progressively guiding evaders from simpler to more complex tasks to refine their evasion strategies. Crucially, our algorithm enables evaders to infer pursuers’ intentions even without prior knowledge of pursuers’ objectives, allowing for optimal decision-making despite mobility constraints. Simulation results demonstrate that our method significantly enhances evasion success, validating the effectiveness of learning-based strategies. Additionally, the algorithm exhibits strong adaptability to environmental changes, ensuring reliable performance across diverse pursuit–evasion scenarios.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131550"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022222","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Designing effective evasion strategies in pursuit–evasion scenarios is challenging, particularly when the pursuer’s model is unknown and inaccessible. This limitation hinders the application of conventional evasion policy design methods. To overcome this challenge, especially when evaders have constrained maneuverability against unrestricted pursuers, we propose a novel multi-agent evasion algorithm based on deep reinforcement learning. Our approach employs a staged learning framework, progressively guiding evaders from simpler to more complex tasks to refine their evasion strategies. Crucially, our algorithm enables evaders to infer pursuers’ intentions even without prior knowledge of pursuers’ objectives, allowing for optimal decision-making despite mobility constraints. Simulation results demonstrate that our method significantly enhances evasion success, validating the effectiveness of learning-based strategies. Additionally, the algorithm exhibits strong adaptability to environmental changes, ensuring reliable performance across diverse pursuit–evasion scenarios.
基于深度强化学习的约束多智能体逃避
在追捕-逃避场景中设计有效的逃避策略是具有挑战性的,特别是当追捕者的模型是未知的和不可接近的。这一限制阻碍了传统规避策略设计方法的应用。为了克服这一挑战,特别是当逃避者对不受限制的追踪者具有有限的机动性时,我们提出了一种基于深度强化学习的多智能体逃避算法。我们的方法采用分阶段学习框架,逐步指导逃避者从更简单的任务到更复杂的任务,以完善他们的逃避策略。至关重要的是,我们的算法使逃避者能够在不事先知道追踪者目标的情况下推断出追踪者的意图,从而在移动受限的情况下做出最佳决策。仿真结果表明,该方法显著提高了规避成功率,验证了基于学习的策略的有效性。此外,该算法对环境变化具有较强的适应性,确保了在各种追捕逃避场景下的可靠性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信