Maximizing the maximum degree in ordered nearest neighbor graphs

IF 0.7 4区 计算机科学 Q4 MATHEMATICS
Péter Ágoston , Adrian Dumitrescu , Arsenii Sagdeev , Karamjeet Singh , Ji Zeng
{"title":"Maximizing the maximum degree in ordered nearest neighbor graphs","authors":"Péter Ágoston ,&nbsp;Adrian Dumitrescu ,&nbsp;Arsenii Sagdeev ,&nbsp;Karamjeet Singh ,&nbsp;Ji Zeng","doi":"10.1016/j.comgeo.2025.102229","DOIUrl":null,"url":null,"abstract":"<div><div>For an ordered point set in a Euclidean space or, more generally, in an abstract metric space, the <em>ordered Nearest Neighbor Graph</em> is obtained by connecting each of the points to its closest predecessor by a directed edge. We show that for every set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree at least <span><math><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mo>(</mo><mn>4</mn><mi>d</mi><mo>)</mo></math></span>. Apart from the <span><math><mn>1</mn><mo>/</mo><mo>(</mo><mn>4</mn><mi>d</mi><mo>)</mo></math></span> factor, this bound is the best possible. As for the abstract setting, we show that for every <em>n</em>-element metric space, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree <span><math><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"132 ","pages":"Article 102229"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000677","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an ordered point set in a Euclidean space or, more generally, in an abstract metric space, the ordered Nearest Neighbor Graph is obtained by connecting each of the points to its closest predecessor by a directed edge. We show that for every set of n points in Rd, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree at least logn/(4d). Apart from the 1/(4d) factor, this bound is the best possible. As for the abstract setting, we show that for every n-element metric space, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree Ω(logn/loglogn).
最大化有序最近邻图的最大度
对于欧几里得空间中的有序点集,或者更一般地说,在抽象度量空间中,通过有向边将每个点与其最近的前导点连接起来,得到有序近邻图。我们证明了对于Rd中每一个n个点的集合,存在一个阶使得相应的有序近邻图的最大度至少为log (n/(4d))。除了1/(4d)因素,这个边界是最好的可能。对于抽象设置,我们证明了对于每一个n元素度量空间,存在一个阶,使得相应的有序近邻图具有最大度Ω(log log n/log log log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信