{"title":"conjugate_map: A Python package for calculating geomagnetic conjugate points","authors":"Kristina Collins , Michael Hartinger , Kelsey Zimmerman , Michelle Salzano , Angeline Burrell","doi":"10.1016/j.softx.2025.102354","DOIUrl":null,"url":null,"abstract":"<div><div>The Earth’s magnetic field is dominated by the dipole moment, which magnetically connects the northern and southern hemispheres. Because ionospheric and magnetospheric plasmas preferentially move along magnetic field lines, local processes that affect the ionosphere or magnetosphere in one hemisphere can cause changes in the opposite hemisphere. The polar regions are uniquely valuable in geospace science, in part because much of the solar wind’s energy enters the system in polar regions and their magnetospheric, ionospheric, and atmospheric connections are markedly different from the lower latitudes. Geomagnetic conjugates are points in the northern and southern hemispheres linked by Earth’s magnetic field, including both points connected by closed magnetic field lines and points in open-field line regions that are in similar magnetic domains. Conjugate locations are both affected asymmetrically by external factors and have also been shown to alter each other’s environment on the order of minutes, which makes interhemispheric comparisons crucial to understanding the full dynamics of the geospace system. Here, we present <span>conjugate_map</span>, a Python library for flexible geomagnetic coordinate conversions that was designed to facilitate interhemispheric comparisons of geospace events and deployment of polar geospace instruments. As the fifth International Polar Year approaches in 2032–33, this work will help researchers to incorporate interhemispheric geospace investigations into the instrument planning process.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"32 ","pages":"Article 102354"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025003206","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The Earth’s magnetic field is dominated by the dipole moment, which magnetically connects the northern and southern hemispheres. Because ionospheric and magnetospheric plasmas preferentially move along magnetic field lines, local processes that affect the ionosphere or magnetosphere in one hemisphere can cause changes in the opposite hemisphere. The polar regions are uniquely valuable in geospace science, in part because much of the solar wind’s energy enters the system in polar regions and their magnetospheric, ionospheric, and atmospheric connections are markedly different from the lower latitudes. Geomagnetic conjugates are points in the northern and southern hemispheres linked by Earth’s magnetic field, including both points connected by closed magnetic field lines and points in open-field line regions that are in similar magnetic domains. Conjugate locations are both affected asymmetrically by external factors and have also been shown to alter each other’s environment on the order of minutes, which makes interhemispheric comparisons crucial to understanding the full dynamics of the geospace system. Here, we present conjugate_map, a Python library for flexible geomagnetic coordinate conversions that was designed to facilitate interhemispheric comparisons of geospace events and deployment of polar geospace instruments. As the fifth International Polar Year approaches in 2032–33, this work will help researchers to incorporate interhemispheric geospace investigations into the instrument planning process.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.