GAMMA_FLOW: Guided Analysis of Multi-label spectra by Matrix Factorization for Lightweight Operational Workflows

IF 2.4 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Viola Rädle , Tilman Hartwig , Benjamin Oesen , Emily Alice Kröger , Julius Vogt , Eike Gericke , Martin Baron
{"title":"GAMMA_FLOW: Guided Analysis of Multi-label spectra by Matrix Factorization for Lightweight Operational Workflows","authors":"Viola Rädle ,&nbsp;Tilman Hartwig ,&nbsp;Benjamin Oesen ,&nbsp;Emily Alice Kröger ,&nbsp;Julius Vogt ,&nbsp;Eike Gericke ,&nbsp;Martin Baron","doi":"10.1016/j.softx.2025.102342","DOIUrl":null,"url":null,"abstract":"<div><div><span>gamma_flow</span> is an open-source Python package for real-time analysis of spectral data. It supports classification, denoising, decomposition, and outlier detection of both single- and multi-component spectra. Instead of relying on large, computationally intensive models, it employs a supervised approach to non-negative matrix factorization (NMF) for dimensionality reduction. This ensures a fast, efficient, and adaptable analysis while reducing computational costs. <span>gamma_flow</span> achieves classification accuracies above 90% and enables reliable automated spectral interpretation. Originally developed for gamma-ray spectra, it is applicable to any type of one-dimensional spectral data. As an open and flexible alternative to proprietary software, it supports various applications in research and industry.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"32 ","pages":"Article 102342"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025003085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

gamma_flow is an open-source Python package for real-time analysis of spectral data. It supports classification, denoising, decomposition, and outlier detection of both single- and multi-component spectra. Instead of relying on large, computationally intensive models, it employs a supervised approach to non-negative matrix factorization (NMF) for dimensionality reduction. This ensures a fast, efficient, and adaptable analysis while reducing computational costs. gamma_flow achieves classification accuracies above 90% and enables reliable automated spectral interpretation. Originally developed for gamma-ray spectra, it is applicable to any type of one-dimensional spectral data. As an open and flexible alternative to proprietary software, it supports various applications in research and industry.
GAMMA_FLOW:基于矩阵分解的轻量级操作工作流多标签谱的导向分析
gamma_flow是一个用于实时分析光谱数据的开源Python包。它支持单组分和多组分光谱的分类、去噪、分解和异常值检测。它不依赖于大型的计算密集型模型,而是采用监督方法进行非负矩阵分解(NMF)降维。这确保了快速、高效和适应性强的分析,同时降低了计算成本。Gamma_flow实现了90%以上的分类精度,并实现了可靠的自动光谱解释。它最初是为伽马射线谱开发的,适用于任何类型的一维光谱数据。作为专有软件的开放和灵活的替代品,它支持研究和工业中的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SoftwareX
SoftwareX COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.50
自引率
2.90%
发文量
184
审稿时长
9 weeks
期刊介绍: SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信