Optimal event-triggered control for multi-agent systems with hierarchical framework

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Denghao Pang , Yechen Guo , Jinde Cao , Boxiang Li , Xiao-Wen Zhao
{"title":"Optimal event-triggered control for multi-agent systems with hierarchical framework","authors":"Denghao Pang ,&nbsp;Yechen Guo ,&nbsp;Jinde Cao ,&nbsp;Boxiang Li ,&nbsp;Xiao-Wen Zhao","doi":"10.1016/j.neucom.2025.131477","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the event-triggered optimal control problem for a class of linear second-order multi-agent systems (MASs) with external disturbances. A hierarchical framework is proposed to address the challenges that arise from the information of the coupled neighbors and external disturbances, integrating the communication, learning, and control layers. Specifically, the communication layer utilizes event-triggered mechanisms (ETMs) to transmit neighbor information, facilitating virtual consensus. The learning layer connects the communication and control layers, employing reinforcement learning (RL) to optimize tracking control with ETMs. The control layer achieves real consensus by aligning the agent states with the processed information from the communication layer. Moreover, this framework effectively mitigates the effects of coupled neighbor information on the controller and suppresses the transmission of external disturbances through the communication network. Finally, two simulation examples are used to verify the anti-interference of the hierarchical framework i.e., it’s still possible to achieve consensus after being disturbed and the effectiveness of considering the reinforcement learning layer via event-triggered mechanism which reduces the communication and learning burden to achieve optimal control.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"656 ","pages":"Article 131477"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225021496","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the event-triggered optimal control problem for a class of linear second-order multi-agent systems (MASs) with external disturbances. A hierarchical framework is proposed to address the challenges that arise from the information of the coupled neighbors and external disturbances, integrating the communication, learning, and control layers. Specifically, the communication layer utilizes event-triggered mechanisms (ETMs) to transmit neighbor information, facilitating virtual consensus. The learning layer connects the communication and control layers, employing reinforcement learning (RL) to optimize tracking control with ETMs. The control layer achieves real consensus by aligning the agent states with the processed information from the communication layer. Moreover, this framework effectively mitigates the effects of coupled neighbor information on the controller and suppresses the transmission of external disturbances through the communication network. Finally, two simulation examples are used to verify the anti-interference of the hierarchical framework i.e., it’s still possible to achieve consensus after being disturbed and the effectiveness of considering the reinforcement learning layer via event-triggered mechanism which reduces the communication and learning burden to achieve optimal control.
层次框架下多智能体系统的最优事件触发控制
研究了一类具有外部扰动的线性二阶多智能体系统的事件触发最优控制问题。提出了一种分层框架,将通信层、学习层和控制层集成在一起,以解决耦合邻居信息和外部干扰带来的挑战。具体来说,通信层利用事件触发机制(etm)传输邻居信息,促进虚拟共识。学习层连接通信层和控制层,采用强化学习(RL)优化etm跟踪控制。控制层通过将代理状态与来自通信层的处理信息对齐来实现真正的共识。此外,该框架有效地减轻了耦合邻居信息对控制器的影响,抑制了外部干扰通过通信网络的传输。最后,通过两个仿真实例验证了分层框架的抗干扰性,即被扰动后仍有可能达成共识,以及通过事件触发机制考虑强化学习层的有效性,减少了沟通和学习负担,实现了最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信