The weakly nonlinear Schrödinger equation in higher dimensions with quasi-periodic initial data

IF 1.5 1区 数学 Q1 MATHEMATICS
Fei Xu
{"title":"The weakly nonlinear Schrödinger equation in higher dimensions with quasi-periodic initial data","authors":"Fei Xu","doi":"10.1016/j.aim.2025.110539","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, under the exponential/polynomial decay condition in Fourier space, we prove that the nonlinear solution to the quasi-periodic Cauchy problem for the weakly nonlinear Schrödinger equation in higher dimensions will asymptotically approach the associated linear solution within a specific time scale. The proof is based on a combinatorial analysis method presented through diagrams. Our results and methods apply to <em>arbitrary</em> space dimensions and general power-law nonlinearities of the form <span><math><mo>±</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msup><mi>u</mi></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>∈</mo><mi>N</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110539"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004372","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, under the exponential/polynomial decay condition in Fourier space, we prove that the nonlinear solution to the quasi-periodic Cauchy problem for the weakly nonlinear Schrödinger equation in higher dimensions will asymptotically approach the associated linear solution within a specific time scale. The proof is based on a combinatorial analysis method presented through diagrams. Our results and methods apply to arbitrary space dimensions and general power-law nonlinearities of the form ±|u|2pu, where 1pN.
具有拟周期初始数据的高维弱非线性Schrödinger方程
本文在Fourier空间的指数/多项式衰减条件下,证明了高维弱非线性Schrödinger方程的拟周期Cauchy问题的非线性解在一定时间尺度内渐近于相关的线性解。证明是基于一种组合分析方法,通过图表给出。我们的结果和方法适用于任意空间维度和形式为±|u|2pu的一般幂律非线性,其中1≤p∈N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信