Long-term stabilized iris tracking with unsupervised constraints on dynamic AS-OCT

IF 11.8 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lingxi Hu , Xiao Wu , Risa Higashita , Xiaoli Xing , Menglan Zhou , Song Lin , Xiaorong Li , Yi Yue , Zunjie Xiao , Yinglin Zhang , Chenglin Yao , Jinming Duan , Jiang Liu
{"title":"Long-term stabilized iris tracking with unsupervised constraints on dynamic AS-OCT","authors":"Lingxi Hu ,&nbsp;Xiao Wu ,&nbsp;Risa Higashita ,&nbsp;Xiaoli Xing ,&nbsp;Menglan Zhou ,&nbsp;Song Lin ,&nbsp;Xiaorong Li ,&nbsp;Yi Yue ,&nbsp;Zunjie Xiao ,&nbsp;Yinglin Zhang ,&nbsp;Chenglin Yao ,&nbsp;Jinming Duan ,&nbsp;Jiang Liu","doi":"10.1016/j.media.2025.103787","DOIUrl":null,"url":null,"abstract":"<div><div>Primary angle-closure glaucoma (PACG) is responsible for half of all glaucoma-related blindness worldwide. The devastating disease is often clinically silent before causing irreversible visual damage. Glaucomatous optic neuropathy is the major diagnostic criterion for glaucoma. Patients with severe PACG have been clinically found to have significantly lower pupillary reflex velocity and higher iris rigidity. Anterior segment optical coherence tomography (AS-OCT) enables dynamic visualization of the ocular iris anatomy which cannot otherwise be acquired by other imaging modalities. However, automatic quantification of dynamic iris motion on AS-OCT has not yet been implemented. The main challenges lie in the frequent jitter of high-resolution optical imaging, irregular temporal variations of elastic features, and relatively scarce datasets. In this paper, we propose an unsupervised constraint-based jitter refinement tracking (CJRTrack) framework for long-term AS-OCT video tracking. CJRTrack primarily consists of three modules: it first extracts a set of key regions from low-resolution images using an off-the-shelf point tracking algorithm. Given the initialized frames and points, an unsupervised multi-frame differentiable registration network estimates the localized deformation field patch for corresponding high-resolution images. It then refines these predictions using a temporal topology constraint-based module, which explicitly ensures overall trajectory stabilization and tracking. Multi-scale evaluations on two independent AS-OCT datasets demonstrate that CJRTrack significantly outperforms existing tracking models in both accuracy and stability. The clinical adaptivity of the model is further assessed on a glaucoma dataset containing 543 diseased eyes. Jitter-corrected quantification is extracted and used to classify neuropathic damage in primary angle closure patients.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"107 ","pages":"Article 103787"},"PeriodicalIF":11.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525003330","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Primary angle-closure glaucoma (PACG) is responsible for half of all glaucoma-related blindness worldwide. The devastating disease is often clinically silent before causing irreversible visual damage. Glaucomatous optic neuropathy is the major diagnostic criterion for glaucoma. Patients with severe PACG have been clinically found to have significantly lower pupillary reflex velocity and higher iris rigidity. Anterior segment optical coherence tomography (AS-OCT) enables dynamic visualization of the ocular iris anatomy which cannot otherwise be acquired by other imaging modalities. However, automatic quantification of dynamic iris motion on AS-OCT has not yet been implemented. The main challenges lie in the frequent jitter of high-resolution optical imaging, irregular temporal variations of elastic features, and relatively scarce datasets. In this paper, we propose an unsupervised constraint-based jitter refinement tracking (CJRTrack) framework for long-term AS-OCT video tracking. CJRTrack primarily consists of three modules: it first extracts a set of key regions from low-resolution images using an off-the-shelf point tracking algorithm. Given the initialized frames and points, an unsupervised multi-frame differentiable registration network estimates the localized deformation field patch for corresponding high-resolution images. It then refines these predictions using a temporal topology constraint-based module, which explicitly ensures overall trajectory stabilization and tracking. Multi-scale evaluations on two independent AS-OCT datasets demonstrate that CJRTrack significantly outperforms existing tracking models in both accuracy and stability. The clinical adaptivity of the model is further assessed on a glaucoma dataset containing 543 diseased eyes. Jitter-corrected quantification is extracted and used to classify neuropathic damage in primary angle closure patients.
基于无监督约束的动态AS-OCT长期稳定虹膜跟踪
原发性闭角型青光眼(PACG)占全世界青光眼相关失明的一半。这种毁灭性的疾病在造成不可逆的视觉损害之前通常在临床上是沉默的。青光眼视神经病变是青光眼的主要诊断标准。临床上发现严重PACG患者瞳孔反射速度明显降低,虹膜硬度较高。前段光学相干断层扫描(AS-OCT)能够实现虹膜解剖的动态可视化,这是其他成像方式无法获得的。然而,AS-OCT上动态虹膜运动的自动量化尚未实现。主要的挑战在于高分辨率光学成像的频繁抖动、弹性特征的不规则时间变化以及相对稀缺的数据集。在本文中,我们提出了一种基于无监督约束的抖动细化跟踪(CJRTrack)框架,用于长期的AS-OCT视频跟踪。CJRTrack主要由三个模块组成:首先,它使用现成的点跟踪算法从低分辨率图像中提取一组关键区域。给定初始化的帧和点,无监督多帧可微分配准网络估计相应高分辨率图像的局部形变场补丁。然后,它使用基于时间拓扑约束的模块来改进这些预测,这明确地确保了整体轨迹的稳定和跟踪。在两个独立的AS-OCT数据集上的多尺度评估表明,CJRTrack在精度和稳定性方面都明显优于现有的跟踪模型。在包含543只患病眼睛的青光眼数据集上进一步评估了该模型的临床适应性。提取抖动校正量化并用于原发性闭角患者的神经性损伤分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信