A multi-centre evaluation of deep learning based radiotherapy planning for left-sided node-negative breast cancer

IF 3.3 Q2 ONCOLOGY
Marlie Besouw , Niels van Acht , Dave van Gruijthuijsen , Thérèse van Nunen , Jorien van der Leer , Maurice van der Sangen , Jacqueline Theuws , Jean-Paul Kleijnen , Antoinette Verbeek-de Kanter , Chrysi Papalazarou , Marcelle Immink , Roel Kierkels , Coen Hurkmans
{"title":"A multi-centre evaluation of deep learning based radiotherapy planning for left-sided node-negative breast cancer","authors":"Marlie Besouw ,&nbsp;Niels van Acht ,&nbsp;Dave van Gruijthuijsen ,&nbsp;Thérèse van Nunen ,&nbsp;Jorien van der Leer ,&nbsp;Maurice van der Sangen ,&nbsp;Jacqueline Theuws ,&nbsp;Jean-Paul Kleijnen ,&nbsp;Antoinette Verbeek-de Kanter ,&nbsp;Chrysi Papalazarou ,&nbsp;Marcelle Immink ,&nbsp;Roel Kierkels ,&nbsp;Coen Hurkmans","doi":"10.1016/j.phro.2025.100839","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>Deep learning based planning (DLP) has the potential to improve consistency and efficiency in radiotherapy treatment planning. However, its clinical applicability remains limited, partly due to the need to translate a predicted dose into a deliverable dose. This study evaluated the generalisability of an institution specific DLP solution across multiple institutions by assessing its performance and developing a standardised translation parameter set.</div></div><div><h3>Materials and Methods</h3><div>Four institutions provided clinical treatment plans of 15 patients with left-sided node-negative breast cancer. Treatment plans delivering 40.05 Gy were generated using a deep learning prediction model trained on data from one institution. External validation was performed using national consensus criteria, by applying the initial parameter settings (InitialMimick) to datasets (n = 45) from three other institutions. A standardised parameter set (GenericMimick) was then developed based on data (n = 12) from all four institutions, whereafter it was evaluated on the remaining 48 patients of the dataset.</div></div><div><h3>Results</h3><div>InitialMimick plans showed higher average dose values in the planning target volume for the D<sub>mean</sub> (40.5 vs. 40.1 Gy) and D<sub>2%</sub> (42.4 vs. 41.4 Gy), with fewer cases meeting all clinical goals (15/45) compared to clinical plans (25/45). After parameter adjustment, GenericMimick plans resulted in more plans meeting all goals (28/48), comparable to the clinical plans (30/48), with D<sub>mean</sub> of 40.3 vs. 40.1 Gy and D<sub>2%</sub> of 41.9 vs. 41.5 Gy. Mean differences in organs at risk mean doses were less than 0.2 Gy.</div></div><div><h3>Conclusion</h3><div>DLP with a standardised translation parameter set demonstrated general applicability across multiple institutions.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"36 ","pages":"Article 100839"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625001447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Purpose

Deep learning based planning (DLP) has the potential to improve consistency and efficiency in radiotherapy treatment planning. However, its clinical applicability remains limited, partly due to the need to translate a predicted dose into a deliverable dose. This study evaluated the generalisability of an institution specific DLP solution across multiple institutions by assessing its performance and developing a standardised translation parameter set.

Materials and Methods

Four institutions provided clinical treatment plans of 15 patients with left-sided node-negative breast cancer. Treatment plans delivering 40.05 Gy were generated using a deep learning prediction model trained on data from one institution. External validation was performed using national consensus criteria, by applying the initial parameter settings (InitialMimick) to datasets (n = 45) from three other institutions. A standardised parameter set (GenericMimick) was then developed based on data (n = 12) from all four institutions, whereafter it was evaluated on the remaining 48 patients of the dataset.

Results

InitialMimick plans showed higher average dose values in the planning target volume for the Dmean (40.5 vs. 40.1 Gy) and D2% (42.4 vs. 41.4 Gy), with fewer cases meeting all clinical goals (15/45) compared to clinical plans (25/45). After parameter adjustment, GenericMimick plans resulted in more plans meeting all goals (28/48), comparable to the clinical plans (30/48), with Dmean of 40.3 vs. 40.1 Gy and D2% of 41.9 vs. 41.5 Gy. Mean differences in organs at risk mean doses were less than 0.2 Gy.

Conclusion

DLP with a standardised translation parameter set demonstrated general applicability across multiple institutions.

Abstract Image

基于深度学习的左侧淋巴结阴性乳腺癌放疗计划的多中心评价
背景与目的基于深度学习的放射治疗计划(DLP)具有提高放射治疗计划一致性和效率的潜力。然而,其临床适用性仍然有限,部分原因是需要将预测剂量转化为可交付剂量。本研究通过评估其性能和开发标准化翻译参数集,评估了跨多个机构的特定机构DLP解决方案的通用性。材料与方法4家机构对15例左侧淋巴结阴性乳腺癌患者提供临床治疗方案。使用基于某机构数据训练的深度学习预测模型生成提供40.05 Gy的治疗方案。通过将初始参数设置(InitialMimick)应用于来自其他三个机构的数据集(n = 45),使用国家共识标准进行外部验证。然后根据来自所有四家机构的数据(n = 12)开发标准化参数集(GenericMimick),然后对数据集中剩余的48名患者进行评估。结果initialmimick计划在Dmean (40.5 vs. 40.1 Gy)和D2% (42.4 vs. 41.4 Gy)的计划目标体积中显示更高的平均剂量值,与临床计划(25/45)相比,达到所有临床目标(15/45)的病例较少。经过参数调整后,GenericMimick计划导致更多的计划达到所有目标(28/48),与临床计划(30/48)相当,Dmean为40.3 vs. 40.1 Gy, D2%为41.9 vs. 41.5 Gy。有危险器官的平均差异平均剂量小于0.2戈瑞。结论具有标准化翻译参数集的dlp在多个机构中具有普遍适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信