Revanth Mattey , Alexander Swearingen , Hakan Ozaltun , Jeffrey J. Giglio
{"title":"Development of a thermal creep model for aluminum alloy 6061 cladding in U-10Mo monolithic fuel plates","authors":"Revanth Mattey , Alexander Swearingen , Hakan Ozaltun , Jeffrey J. Giglio","doi":"10.1016/j.nucengdes.2025.114428","DOIUrl":null,"url":null,"abstract":"<div><div>Plate-type fuel elements consisting of a high-density, low-enriched uranium (LEU) U–10Mo-based fuel foil encapsulated in an aluminum alloy (AA) cladding are fabricated using the hot isostatic pressing (HIP) technique. During the HIP process, the fuel plate system is heated to 560 °C, then cooled to room temperature. This heat cycle significantly affects the mechanical properties of the aluminum cladding, and experimental investigations have shown that, post-HIP bonding, the mechanical properties of the aluminum cladding transition from those of AA 6061-T6 to something closer to the O temper. More specifically, the ultimate strength of the cladding decreases while its ductility increases, making it challenging to capture the changes in mechanical behavior and material properties. Understanding the residual stresses generated during the HIP process is critical for assessing the fuel plate’s integrity under various temperature, pressure, and irradiation. To simulate the HIP bonding process, the elastic, plastic, and thermal properties of the cladding are assumed to be similar to those of AA 6061-O temper. However, the primary challenge lies in the lack of available data for the creep model of the AA 6061 cladding during this transient process of HIP. The present study focuses on developing a computational model that predicts the creep behavior of the aluminum cladding in the fuel plates during the HIP process, as cladding creep significantly influences the residual stresses generated in U-10Mo fuel plates during HIP fabrication. Furthermore, as HIP bonding occurs at high temperatures that are nearing the melting point of aluminum, the present work considered a temperature-dependent Arrhenius-type creep model. In particular, a hyperbolic sine creep model is employed to estimate the creep properties of the as-fabricated aluminum cladding. The residual stresses predicted in the U-10Mo fuel when using the newly calibrated creep model closely align with the experimental measurements, validating the model’s accuracy.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"445 ","pages":"Article 114428"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325006053","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plate-type fuel elements consisting of a high-density, low-enriched uranium (LEU) U–10Mo-based fuel foil encapsulated in an aluminum alloy (AA) cladding are fabricated using the hot isostatic pressing (HIP) technique. During the HIP process, the fuel plate system is heated to 560 °C, then cooled to room temperature. This heat cycle significantly affects the mechanical properties of the aluminum cladding, and experimental investigations have shown that, post-HIP bonding, the mechanical properties of the aluminum cladding transition from those of AA 6061-T6 to something closer to the O temper. More specifically, the ultimate strength of the cladding decreases while its ductility increases, making it challenging to capture the changes in mechanical behavior and material properties. Understanding the residual stresses generated during the HIP process is critical for assessing the fuel plate’s integrity under various temperature, pressure, and irradiation. To simulate the HIP bonding process, the elastic, plastic, and thermal properties of the cladding are assumed to be similar to those of AA 6061-O temper. However, the primary challenge lies in the lack of available data for the creep model of the AA 6061 cladding during this transient process of HIP. The present study focuses on developing a computational model that predicts the creep behavior of the aluminum cladding in the fuel plates during the HIP process, as cladding creep significantly influences the residual stresses generated in U-10Mo fuel plates during HIP fabrication. Furthermore, as HIP bonding occurs at high temperatures that are nearing the melting point of aluminum, the present work considered a temperature-dependent Arrhenius-type creep model. In particular, a hyperbolic sine creep model is employed to estimate the creep properties of the as-fabricated aluminum cladding. The residual stresses predicted in the U-10Mo fuel when using the newly calibrated creep model closely align with the experimental measurements, validating the model’s accuracy.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.