Knockdown of argininosuccinate lyase influences the growth of Mycolicibacterium smegmatis in vitro and in vivo

IF 2.9 3区 医学 Q3 IMMUNOLOGY
Yufan Xu , Longlong Wang , Jijie Jiang , Guocheng Zhao , Zhe Wang
{"title":"Knockdown of argininosuccinate lyase influences the growth of Mycolicibacterium smegmatis in vitro and in vivo","authors":"Yufan Xu ,&nbsp;Longlong Wang ,&nbsp;Jijie Jiang ,&nbsp;Guocheng Zhao ,&nbsp;Zhe Wang","doi":"10.1016/j.tube.2025.102693","DOIUrl":null,"url":null,"abstract":"<div><div>The rising prevalence of drug-resistant tuberculosis (DR-TB), coupled with stagnation in the development of novel therapeutics, underscores the urgent need for new drug targets and innovative anti-tuberculosis agents. In this study, we demonstrate that CRISPR interference-mediated knockdown of argH, a nitrogen metabolism-associated gene encoding argininosuccinate lyase, significantly impairs the growth of <em>Mycolicibacterium smegmatis</em> (formerly <em>Mycobacterium smegmatis</em>). This growth defect was alleviated in a concentration-dependent manner by arginine supplementation. In a goldfish infection model, argH knockdown led to a marked reduction in bacterial burden within both liver and kidney tissues. Notably, bacitracin and 5-fluorouracil exhibited synergistic effects when combined with argH knockdown. Metabolomic profiling revealed significant perturbations in multiple amino acids, as well as in succinyl-CoA and lactate levels, suggesting that suppression of argH impairs <em>M. smegmatis</em> proliferation by disrupting amino acid homeostasis and interfering with aerobic respiration.</div></div>","PeriodicalId":23383,"journal":{"name":"Tuberculosis","volume":"155 ","pages":"Article 102693"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1472979225000885","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rising prevalence of drug-resistant tuberculosis (DR-TB), coupled with stagnation in the development of novel therapeutics, underscores the urgent need for new drug targets and innovative anti-tuberculosis agents. In this study, we demonstrate that CRISPR interference-mediated knockdown of argH, a nitrogen metabolism-associated gene encoding argininosuccinate lyase, significantly impairs the growth of Mycolicibacterium smegmatis (formerly Mycobacterium smegmatis). This growth defect was alleviated in a concentration-dependent manner by arginine supplementation. In a goldfish infection model, argH knockdown led to a marked reduction in bacterial burden within both liver and kidney tissues. Notably, bacitracin and 5-fluorouracil exhibited synergistic effects when combined with argH knockdown. Metabolomic profiling revealed significant perturbations in multiple amino acids, as well as in succinyl-CoA and lactate levels, suggesting that suppression of argH impairs M. smegmatis proliferation by disrupting amino acid homeostasis and interfering with aerobic respiration.
精氨酸琥珀酸裂解酶的敲低对耻垢分枝杆菌体外和体内生长的影响
耐药结核病(DR-TB)的流行率不断上升,加上新疗法的开发停滞不前,突显出迫切需要新的药物靶点和创新的抗结核药物。在这项研究中,我们证明了CRISPR干扰介导的argH(一种编码精氨酸琥珀酸裂解酶的氮代谢相关基因)的敲低会显著损害耻垢分枝杆菌(原耻垢分枝杆菌)的生长。通过补充精氨酸,这种生长缺陷以浓度依赖性的方式得到缓解。在金鱼感染模型中,敲低argH导致肝脏和肾脏组织内细菌负担显著减少。值得注意的是,杆菌肽和5-氟尿嘧啶在与argH下调联合使用时表现出协同效应。代谢组学分析显示,多种氨基酸以及琥珀酰辅酶a和乳酸水平受到显著干扰,表明抑制argH通过破坏氨基酸稳态和干扰有氧呼吸来损害耻毛分枝杆菌的增殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tuberculosis
Tuberculosis 医学-呼吸系统
CiteScore
4.60
自引率
3.10%
发文量
87
审稿时长
49 days
期刊介绍: Tuberculosis is a speciality journal focusing on basic experimental research on tuberculosis, notably on bacteriological, immunological and pathogenesis aspects of the disease. The journal publishes original research and reviews on the host response and immunology of tuberculosis and the molecular biology, genetics and physiology of the organism, however discourages submissions with a meta-analytical focus (for example, articles based on searches of published articles in public electronic databases, especially where there is lack of evidence of the personal involvement of authors in the generation of such material). We do not publish Clinical Case-Studies. Areas on which submissions are welcomed include: -Clinical TrialsDiagnostics- Antimicrobial resistance- Immunology- Leprosy- Microbiology, including microbial physiology- Molecular epidemiology- Non-tuberculous Mycobacteria- Pathogenesis- Pathology- Vaccine development. This Journal does not accept case-reports. The resurgence of interest in tuberculosis has accelerated the pace of relevant research and Tuberculosis has grown with it, as the only journal dedicated to experimental biomedical research in tuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信