Whirling hexagonal convection in a rotating binary-alloy mushy layer

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Miloš Revallo , Peter Guba
{"title":"Whirling hexagonal convection in a rotating binary-alloy mushy layer","authors":"Miloš Revallo ,&nbsp;Peter Guba","doi":"10.1016/j.physd.2025.134897","DOIUrl":null,"url":null,"abstract":"<div><div>We study small amplitude convection in a mushy layer rotating about the vertical axis during binary-alloy solidification. The variation of permeability with the local solid fraction, an inherent property of the mushy layers, has been known to be responsible for three-dimensional steady hexagons as a preferred pattern near the onset of convection. We find that rotation manifests itself in a breaking of the chiral symmetry, giving rise to a secondary instability in the form of oscillating hexagons. We derive the amplitude equations governing the weakly-nonlinear evolution near this chiral-symmetry breaking. We localise the secondary bifurcation points identifying the regime of oscillating hexagons and analyse their parametric dependencies. We propose parameter conditions to approach the regime of oscillating hexagons in potential experiments.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134897"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003744","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study small amplitude convection in a mushy layer rotating about the vertical axis during binary-alloy solidification. The variation of permeability with the local solid fraction, an inherent property of the mushy layers, has been known to be responsible for three-dimensional steady hexagons as a preferred pattern near the onset of convection. We find that rotation manifests itself in a breaking of the chiral symmetry, giving rise to a secondary instability in the form of oscillating hexagons. We derive the amplitude equations governing the weakly-nonlinear evolution near this chiral-symmetry breaking. We localise the secondary bifurcation points identifying the regime of oscillating hexagons and analyse their parametric dependencies. We propose parameter conditions to approach the regime of oscillating hexagons in potential experiments.
旋转二元合金糊状层中的旋转六角形对流
本文研究了二元合金凝固过程中绕垂直轴旋转的糊状层中的小振幅对流。渗透性随局部固体分数的变化,是糊状层的固有特性,已知是三维稳定六边形作为对流开始附近的首选模式的原因。我们发现旋转表现为手性对称的破坏,引起振荡六边形形式的二次不稳定性。我们推导了控制手性对称性破缺附近弱非线性演化的振幅方程。我们定位了识别振动六边形状态的二次分岔点,并分析了它们的参数依赖性。我们提出了一些参数条件来接近势实验中振荡六边形的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信