{"title":"Sequential constrained optimization for multi-entity operation of integrated electricity-gas distribution systems","authors":"Yeong Geon Son, Sung-Yul Kim","doi":"10.1016/j.egyai.2025.100619","DOIUrl":null,"url":null,"abstract":"<div><div>The reliable and coordinated operation of energy systems is becoming increasingly important as renewable energy penetration grows and electricity and gas infrastructures become more interconnected. This study addresses the challenge of aligning multiple stakeholders’ objectives in integrated electricity and gas distribution systems by proposing a sequential constrained optimization method. The method solves the multi-objective optimization problem by sequentially prioritizing each entity’s objective while incorporating others as adaptive-weighted sub-objectives and constraints. This process ensures that all entities participate in a fair and balanced decision-making procedure, ultimately converging to a consensus-based solution. The algorithm is validated using IEEE 33-bus and 118-bus test systems coupled with gas networks. Results show that the proposed method improves optimal resource allocation effectiveness by up to 3.66 compared to individual-objective or aggregated-objective benchmarks. Specifically, the method achieves performance improvements ranging from 0.02 pu to 1.7 pu across four distinct entities, highlighting its superiority in balancing conflicting operational goals. Moreover, the method demonstrates low computational delay and converges in fewer than 15 iterations for all tested cases. The algorithm adapts flexibly to different system configurations and maintains solution stability even under asymmetric stakeholder preferences. These findings indicate that the proposed sequential constrained optimization framework is a scalable and effective approach for equitable, multi-agent coordination in integrated multi-energy systems.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"22 ","pages":"Article 100619"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682500151X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The reliable and coordinated operation of energy systems is becoming increasingly important as renewable energy penetration grows and electricity and gas infrastructures become more interconnected. This study addresses the challenge of aligning multiple stakeholders’ objectives in integrated electricity and gas distribution systems by proposing a sequential constrained optimization method. The method solves the multi-objective optimization problem by sequentially prioritizing each entity’s objective while incorporating others as adaptive-weighted sub-objectives and constraints. This process ensures that all entities participate in a fair and balanced decision-making procedure, ultimately converging to a consensus-based solution. The algorithm is validated using IEEE 33-bus and 118-bus test systems coupled with gas networks. Results show that the proposed method improves optimal resource allocation effectiveness by up to 3.66 compared to individual-objective or aggregated-objective benchmarks. Specifically, the method achieves performance improvements ranging from 0.02 pu to 1.7 pu across four distinct entities, highlighting its superiority in balancing conflicting operational goals. Moreover, the method demonstrates low computational delay and converges in fewer than 15 iterations for all tested cases. The algorithm adapts flexibly to different system configurations and maintains solution stability even under asymmetric stakeholder preferences. These findings indicate that the proposed sequential constrained optimization framework is a scalable and effective approach for equitable, multi-agent coordination in integrated multi-energy systems.