Nonparametric regression under cluster sampling

IF 4 3区 经济学 Q1 ECONOMICS
Yuya Shimizu
{"title":"Nonparametric regression under cluster sampling","authors":"Yuya Shimizu","doi":"10.1016/j.jeconom.2025.106102","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a general asymptotic theory for nonparametric kernel regression in the presence of cluster dependence. We examine nonparametric density estimation, Nadaraya–Watson kernel regression, and local linear estimation. Our theory accommodates growing and heterogeneous cluster sizes. We derive asymptotic conditional bias and variance, establish uniform consistency, and prove asymptotic normality. Our findings reveal that under heterogeneous cluster sizes, the asymptotic variance includes a new term reflecting within-cluster dependence, which is overlooked when cluster sizes are presumed to be bounded. We propose valid approaches for bandwidth selection and inference, introduce estimators of the asymptotic variance, and demonstrate their consistency. In simulations, we verify the effectiveness of the cluster-robust bandwidth selection and show that the derived cluster-robust confidence interval improves the coverage ratio. We illustrate the application of these methods using a policy-targeting dataset in development economics.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"252 ","pages":"Article 106102"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001563","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a general asymptotic theory for nonparametric kernel regression in the presence of cluster dependence. We examine nonparametric density estimation, Nadaraya–Watson kernel regression, and local linear estimation. Our theory accommodates growing and heterogeneous cluster sizes. We derive asymptotic conditional bias and variance, establish uniform consistency, and prove asymptotic normality. Our findings reveal that under heterogeneous cluster sizes, the asymptotic variance includes a new term reflecting within-cluster dependence, which is overlooked when cluster sizes are presumed to be bounded. We propose valid approaches for bandwidth selection and inference, introduce estimators of the asymptotic variance, and demonstrate their consistency. In simulations, we verify the effectiveness of the cluster-robust bandwidth selection and show that the derived cluster-robust confidence interval improves the coverage ratio. We illustrate the application of these methods using a policy-targeting dataset in development economics.
聚类抽样下的非参数回归
本文提出了一类存在聚类依赖的非参数核回归的一般渐近理论。我们研究了非参数密度估计、Nadaraya-Watson核回归和局部线性估计。我们的理论适应了不断增长和异构的集群大小。导出渐近条件偏差和方差,建立一致相合性,证明渐近正态性。我们的研究结果表明,在异质簇大小下,渐近方差包含一个反映簇内依赖的新项,当假设簇大小有界时,该项被忽略。我们提出了带宽选择和推断的有效方法,引入了渐近方差的估计量,并证明了它们的一致性。通过仿真,验证了该算法的有效性,并表明所得到的簇鲁棒置信区间提高了覆盖比。我们使用发展经济学中的政策目标数据集来说明这些方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信