Inference on model parameters with many L-moments

IF 4 3区 经济学 Q1 ECONOMICS
Luis A.F. Alvarez , Chang Chiann , Pedro A. Morettin
{"title":"Inference on model parameters with many L-moments","authors":"Luis A.F. Alvarez ,&nbsp;Chang Chiann ,&nbsp;Pedro A. Morettin","doi":"10.1016/j.jeconom.2025.106101","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies parameter estimation using L-moments, an alternative to traditional moments with attractive statistical properties. The estimation of model parameters by matching sample L-moments is known to outperform maximum likelihood estimation (MLE) in small samples from popular distributions. The choice of the number of L-moments used in estimation remains <em>ad-hoc</em>, though: researchers typically set the number of L-moments equal to the number of parameters, which is inefficient in larger samples. In this paper, we show that, by properly choosing the number of L-moments and weighting these accordingly, one is able to construct an estimator that outperforms MLE in finite samples, and yet retains asymptotic efficiency. We do so by introducing a generalised method of L-moments estimator and deriving its properties in an asymptotic framework where the number of L-moments varies with sample size. We then propose methods to automatically select the number of L-moments in a sample. Monte Carlo evidence shows our approach can provide mean-squared-error improvements over MLE in smaller samples, whilst working as well as it in larger samples. We consider extensions of our approach to the estimation of conditional models and a class semiparametric models. We apply the latter to study expenditure patterns in a ridesharing platform in Brazil.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"252 ","pages":"Article 106101"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001551","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies parameter estimation using L-moments, an alternative to traditional moments with attractive statistical properties. The estimation of model parameters by matching sample L-moments is known to outperform maximum likelihood estimation (MLE) in small samples from popular distributions. The choice of the number of L-moments used in estimation remains ad-hoc, though: researchers typically set the number of L-moments equal to the number of parameters, which is inefficient in larger samples. In this paper, we show that, by properly choosing the number of L-moments and weighting these accordingly, one is able to construct an estimator that outperforms MLE in finite samples, and yet retains asymptotic efficiency. We do so by introducing a generalised method of L-moments estimator and deriving its properties in an asymptotic framework where the number of L-moments varies with sample size. We then propose methods to automatically select the number of L-moments in a sample. Monte Carlo evidence shows our approach can provide mean-squared-error improvements over MLE in smaller samples, whilst working as well as it in larger samples. We consider extensions of our approach to the estimation of conditional models and a class semiparametric models. We apply the latter to study expenditure patterns in a ridesharing platform in Brazil.
具有多个l矩的模型参数推理
本文研究了l矩的参数估计,l矩是传统矩的一种替代,具有吸引人的统计特性。已知通过匹配样本l矩来估计模型参数在流行分布的小样本中优于最大似然估计(MLE)。然而,在估计中使用的l -矩数量的选择仍然是临时的:研究人员通常将l -矩的数量设置为等于参数的数量,这在较大的样本中是低效的。在本文中,我们表明,通过适当地选择l矩的数量并相应地对它们进行加权,可以构造一个在有限样本中优于MLE的估计量,但仍保持渐近效率。我们通过引入l -矩估计量的一种广义方法,并在l -矩个数随样本量变化的渐近框架中推导了它的性质。然后,我们提出了自动选择样本中l矩数量的方法。蒙特卡罗证据表明,我们的方法可以在较小的样本中提供均方误差的改进,同时在较大的样本中也能工作。我们考虑了对条件模型和一类半参数模型估计方法的扩展。我们将后者应用于研究巴西拼车平台的支出模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信