Luis A.F. Alvarez , Chang Chiann , Pedro A. Morettin
{"title":"Inference on model parameters with many L-moments","authors":"Luis A.F. Alvarez , Chang Chiann , Pedro A. Morettin","doi":"10.1016/j.jeconom.2025.106101","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies parameter estimation using L-moments, an alternative to traditional moments with attractive statistical properties. The estimation of model parameters by matching sample L-moments is known to outperform maximum likelihood estimation (MLE) in small samples from popular distributions. The choice of the number of L-moments used in estimation remains <em>ad-hoc</em>, though: researchers typically set the number of L-moments equal to the number of parameters, which is inefficient in larger samples. In this paper, we show that, by properly choosing the number of L-moments and weighting these accordingly, one is able to construct an estimator that outperforms MLE in finite samples, and yet retains asymptotic efficiency. We do so by introducing a generalised method of L-moments estimator and deriving its properties in an asymptotic framework where the number of L-moments varies with sample size. We then propose methods to automatically select the number of L-moments in a sample. Monte Carlo evidence shows our approach can provide mean-squared-error improvements over MLE in smaller samples, whilst working as well as it in larger samples. We consider extensions of our approach to the estimation of conditional models and a class semiparametric models. We apply the latter to study expenditure patterns in a ridesharing platform in Brazil.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"252 ","pages":"Article 106101"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001551","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies parameter estimation using L-moments, an alternative to traditional moments with attractive statistical properties. The estimation of model parameters by matching sample L-moments is known to outperform maximum likelihood estimation (MLE) in small samples from popular distributions. The choice of the number of L-moments used in estimation remains ad-hoc, though: researchers typically set the number of L-moments equal to the number of parameters, which is inefficient in larger samples. In this paper, we show that, by properly choosing the number of L-moments and weighting these accordingly, one is able to construct an estimator that outperforms MLE in finite samples, and yet retains asymptotic efficiency. We do so by introducing a generalised method of L-moments estimator and deriving its properties in an asymptotic framework where the number of L-moments varies with sample size. We then propose methods to automatically select the number of L-moments in a sample. Monte Carlo evidence shows our approach can provide mean-squared-error improvements over MLE in smaller samples, whilst working as well as it in larger samples. We consider extensions of our approach to the estimation of conditional models and a class semiparametric models. We apply the latter to study expenditure patterns in a ridesharing platform in Brazil.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.