Thermal turbulence mitigation in underwater images of nuclear fuel assemblies

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Lei Li , Mohan He , Wenjun Ren , Hengjian Gao , Shangqing Huang , Shukun Wu , Lei Fan , Hao Chen , Kaiwei Zhang
{"title":"Thermal turbulence mitigation in underwater images of nuclear fuel assemblies","authors":"Lei Li ,&nbsp;Mohan He ,&nbsp;Wenjun Ren ,&nbsp;Hengjian Gao ,&nbsp;Shangqing Huang ,&nbsp;Shukun Wu ,&nbsp;Lei Fan ,&nbsp;Hao Chen ,&nbsp;Kaiwei Zhang","doi":"10.1016/j.displa.2025.103186","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater imaging of nuclear fuel assemblies is crucial for inspection, monitoring, and safety evaluation in nuclear facilities. However, thermal turbulence caused by temperature gradients and convective flows in the cooling water can lead to severe visual degradation, including geometric distortions and blurring. To facilitate research in this underexplored area, we construct a dedicated dataset that captures thermal turbulence in underwater nuclear fuel assembly imaging. The dataset contains multi-frame sequences of turbulence-degraded images, along with corresponding ground truth images captured under still-water conditions. Building upon this dataset, we propose a novel multi-frame turbulence removal network that exploits temporal redundancy and motion cues for effective restoration. The proposed architecture integrates five key components: a feature extraction backbone for spatial encoding, a temporal self-attention block to capture long-range inter-frame dependencies, a bidirectional flow-guided propagation module, an optical flow-based warping mechanism for spatial alignment, and a fusion-reconstruction head for generating high-quality reference frames. Extensive experiments on the proposed dataset demonstrate that our method achieves superior performance over existing baselines, particularly in scenarios involving complex turbulence dynamics and non-rigid motion. The proposed framework provides a robust solution for visual enhancement in thermally dynamic underwater environments encountered in nuclear engineering applications.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103186"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002239","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater imaging of nuclear fuel assemblies is crucial for inspection, monitoring, and safety evaluation in nuclear facilities. However, thermal turbulence caused by temperature gradients and convective flows in the cooling water can lead to severe visual degradation, including geometric distortions and blurring. To facilitate research in this underexplored area, we construct a dedicated dataset that captures thermal turbulence in underwater nuclear fuel assembly imaging. The dataset contains multi-frame sequences of turbulence-degraded images, along with corresponding ground truth images captured under still-water conditions. Building upon this dataset, we propose a novel multi-frame turbulence removal network that exploits temporal redundancy and motion cues for effective restoration. The proposed architecture integrates five key components: a feature extraction backbone for spatial encoding, a temporal self-attention block to capture long-range inter-frame dependencies, a bidirectional flow-guided propagation module, an optical flow-based warping mechanism for spatial alignment, and a fusion-reconstruction head for generating high-quality reference frames. Extensive experiments on the proposed dataset demonstrate that our method achieves superior performance over existing baselines, particularly in scenarios involving complex turbulence dynamics and non-rigid motion. The proposed framework provides a robust solution for visual enhancement in thermally dynamic underwater environments encountered in nuclear engineering applications.
核燃料组件水下图像中的热湍流缓解
核燃料组件的水下成像对于核设施的检查、监测和安全评价至关重要。然而,由温度梯度和冷却水中的对流流动引起的热湍流会导致严重的视觉退化,包括几何扭曲和模糊。为了促进这一未开发领域的研究,我们构建了一个专用数据集,用于捕获水下核燃料组件成像中的热湍流。该数据集包含湍流退化图像的多帧序列,以及在静水条件下捕获的相应地面真值图像。在此数据集的基础上,我们提出了一种新的多帧湍流去除网络,该网络利用时间冗余和运动线索进行有效的恢复。所提出的架构集成了五个关键组件:用于空间编码的特征提取骨干,用于捕获远程帧间依赖关系的时间自关注块,双向流引导传播模块,用于空间对齐的基于光流的翘曲机制,以及用于生成高质量参考帧的融合重建头。在所提出的数据集上进行的大量实验表明,我们的方法在现有基线上取得了卓越的性能,特别是在涉及复杂湍流动力学和非刚性运动的场景中。所提出的框架为核工程应用中遇到的热动力水下环境中的视觉增强提供了一个强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信