Efficient rank-recovery-based coherent source localization framework for non-uniform FDA

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Feng Shi , Shengheng Liu , Hao Chi Zhang , Kaiyan Xu , Le Peng Zhang , Qi Yang
{"title":"Efficient rank-recovery-based coherent source localization framework for non-uniform FDA","authors":"Feng Shi ,&nbsp;Shengheng Liu ,&nbsp;Hao Chi Zhang ,&nbsp;Kaiyan Xu ,&nbsp;Le Peng Zhang ,&nbsp;Qi Yang","doi":"10.1016/j.sigpro.2025.110286","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses the problem of resolving coherent sources in non-uniform frequency diverse arrays (FDAs), where existing decoherence methods fail due to the unique geometric irregularity. We propose a novel covariance matrix reconstruction framework that enables high-resolution joint estimation of range and angle. The key innovation lies in a dual-structure recovery mechanism: First, a binary mask matrix is designed using FDA-specific space–frequency difference constraints to restore the degraded sample covariance’s Hermitian-Toeplitz structure. Atomic norm minimization is then integrated to achieve super-resolution parameter estimates, with the alternating direction method of multipliers enabling computationally efficient optimization. Theoretical analysis establishes performance bounds for covariance matrix reconstruction, while extensive simulations demonstrate the proposed method’s superior estimation accuracy over conventional subspace-based approaches in coherent scenarios, while maintaining low computational complexity.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110286"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425004001","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the problem of resolving coherent sources in non-uniform frequency diverse arrays (FDAs), where existing decoherence methods fail due to the unique geometric irregularity. We propose a novel covariance matrix reconstruction framework that enables high-resolution joint estimation of range and angle. The key innovation lies in a dual-structure recovery mechanism: First, a binary mask matrix is designed using FDA-specific space–frequency difference constraints to restore the degraded sample covariance’s Hermitian-Toeplitz structure. Atomic norm minimization is then integrated to achieve super-resolution parameter estimates, with the alternating direction method of multipliers enabling computationally efficient optimization. Theoretical analysis establishes performance bounds for covariance matrix reconstruction, while extensive simulations demonstrate the proposed method’s superior estimation accuracy over conventional subspace-based approaches in coherent scenarios, while maintaining low computational complexity.
基于秩恢复的非均匀FDA相干源定位框架
本文解决了在非均匀变频阵列(FDAs)中解析相干源的问题,其中现有的退相干方法由于其独特的几何不规则性而失败。我们提出了一种新的协方差矩阵重建框架,可以实现距离和角度的高分辨率联合估计。关键创新在于双结构恢复机制:首先,利用fda特定的空频差约束设计了一个二元掩模矩阵来恢复退化的样本协方差的Hermitian-Toeplitz结构。然后集成原子范数最小化以实现超分辨率参数估计,并使用乘法器的交替方向方法实现计算效率优化。理论分析建立了协方差矩阵重建的性能界限,而大量的仿真表明,该方法在保持较低的计算复杂度的同时,在相干场景下比传统的基于子空间的方法具有更高的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信