Adaptive fault detection via machine unlearning

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Amal Anto , Deepak Kumar , Hariprasad Kodamana , Manojkumar Ramteke
{"title":"Adaptive fault detection via machine unlearning","authors":"Amal Anto ,&nbsp;Deepak Kumar ,&nbsp;Hariprasad Kodamana ,&nbsp;Manojkumar Ramteke","doi":"10.1016/j.compchemeng.2025.109394","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven models are widely relied upon for process fault detection. However, their performance is susceptible to the quality of training data. Anomalous data in training or online updates degrade detection models, increasing false alarms or missed detections, and retraining models on corrected datasets is impractical for real-time fault detection. To address this problem, we propose a machine unlearning based adaptive fault detection that updates the model parameters to selectively remove the influence of faulty data from trained models without retraining and compromising the accuracy on normal data. We implement blindspot unlearning on four deep learning-based fault detection models: Autoencoder (AE), Variational Autoencoder (VAE), LSTM-AE, and LSTM-VAE, and evaluate their performance on two benchmark datasets: the Tennessee Eastman Process (TEP) and the Wastewater Treatment Plant (WWTP). We evaluate the models’ fault detection performance before and after unlearning. Our findings demonstrate that unlearning improves fault detection performance while significantly reducing computational overhead. Compared to the original models, unlearned models showcased improved fault detection rate, achieving a 44% increase on the TEP dataset and reaching 90% on the WWTP dataset. Unlearned models achieved fault detection performance comparable to retrained models, reducing computational time by up to 46% on TEP and 33% on WWTP. This validates the effectiveness of machine unlearning for adaptive fault detection.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109394"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003977","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven models are widely relied upon for process fault detection. However, their performance is susceptible to the quality of training data. Anomalous data in training or online updates degrade detection models, increasing false alarms or missed detections, and retraining models on corrected datasets is impractical for real-time fault detection. To address this problem, we propose a machine unlearning based adaptive fault detection that updates the model parameters to selectively remove the influence of faulty data from trained models without retraining and compromising the accuracy on normal data. We implement blindspot unlearning on four deep learning-based fault detection models: Autoencoder (AE), Variational Autoencoder (VAE), LSTM-AE, and LSTM-VAE, and evaluate their performance on two benchmark datasets: the Tennessee Eastman Process (TEP) and the Wastewater Treatment Plant (WWTP). We evaluate the models’ fault detection performance before and after unlearning. Our findings demonstrate that unlearning improves fault detection performance while significantly reducing computational overhead. Compared to the original models, unlearned models showcased improved fault detection rate, achieving a 44% increase on the TEP dataset and reaching 90% on the WWTP dataset. Unlearned models achieved fault detection performance comparable to retrained models, reducing computational time by up to 46% on TEP and 33% on WWTP. This validates the effectiveness of machine unlearning for adaptive fault detection.
基于机器学习的自适应故障检测
数据驱动模型广泛用于过程故障检测。然而,它们的性能容易受到训练数据质量的影响。训练或在线更新中的异常数据会降低检测模型,增加假警报或漏检,并且在纠正的数据集上重新训练模型对于实时故障检测是不切实际的。为了解决这个问题,我们提出了一种基于机器学习的自适应故障检测方法,该方法更新模型参数,以选择性地从训练好的模型中去除错误数据的影响,而无需重新训练和损害正常数据的准确性。我们对四种基于深度学习的故障检测模型:自编码器(AE)、变分自编码器(VAE)、LSTM-AE和LSTM-VAE实现了盲点去除,并在田纳西伊士曼过程(TEP)和污水处理厂(WWTP)两个基准数据集上评估了它们的性能。我们评估了模型在学习前后的故障检测性能。我们的研究结果表明,学习可以提高故障检测性能,同时显著降低计算开销。与原始模型相比,未学习模型显示出更高的故障检测率,在TEP数据集上提高了44%,在WWTP数据集上提高了90%。未学习模型的故障检测性能与再训练模型相当,在TEP和WWTP上分别减少了46%和33%的计算时间。这验证了机器学习在自适应故障检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信