Spectrally compatible MIMO radar waveform design for extended target detection

IF 3.6 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rongchang Liang , Jinfeng Hu , Yiran Zhang , Dongxu An , Kai Zhong , Jun Liu , Yuankai Wang , Huiyong Li
{"title":"Spectrally compatible MIMO radar waveform design for extended target detection","authors":"Rongchang Liang ,&nbsp;Jinfeng Hu ,&nbsp;Yiran Zhang ,&nbsp;Dongxu An ,&nbsp;Kai Zhong ,&nbsp;Jun Liu ,&nbsp;Yuankai Wang ,&nbsp;Huiyong Li","doi":"10.1016/j.sigpro.2025.110212","DOIUrl":null,"url":null,"abstract":"<div><div>Spectrally compatible MIMO radar waveform design is crucial for extended target detection. Existing methods either maximize the worst-case SINR within target aspect angles (TAAs) while ignoring spectral compatibility, or consider spectral compatibility by maximizing the average SINR, but the worst-case SINR performance may not be ensured. Different from above, under constant modulus (CM) and inequality spectral constraints, we maximize the worst-case SINR within the target aspect angles(TAAs) to satisfy the robustness requirement, while the spectral constraints ensure spectral compatibility by limiting the energy spectral density(ESD) below the predefined threshold. This problem is challenging due to the non-smoothness of max–min design and multiple inequality constraints. Noting that exact penalty terms are suitable for solving inequality constraints, and CM constraints satisfying the complex-circle manifold, we propose the Max-Min-Exact Penalized Product Manifold (MM-E<span><math><msup><mrow><mtext>P</mtext></mrow><mrow><mn>2</mn></mrow></msup></math></span>M) method. First, auxiliary variables are used to address the non-smoothness of max–min design, transforming it into a minimization problem. Next, exact penalty terms are constructed to remove inequality constraints, and the problem is then projected onto the Product-Complex-Circle-Euclidean Manifold (P<span><math><msup><mrow><mtext>C</mtext></mrow><mrow><mn>2</mn></mrow></msup></math></span>EM), thus transforming it into an unconstrained problem. Finally, the parallel simplified quasi-Newton (PSQN) method is divided. The dataset obtained by illuminating a T-72 tank is used to validate the performance. Simulation results demonstrate that the proposed method has following advantages: (i) improves SINR by at least 4.49 dB while controlling energy spectral density exactly; (ii) provides SINR performance that meets requirements for each angle within TAAs.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110212"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425003263","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spectrally compatible MIMO radar waveform design is crucial for extended target detection. Existing methods either maximize the worst-case SINR within target aspect angles (TAAs) while ignoring spectral compatibility, or consider spectral compatibility by maximizing the average SINR, but the worst-case SINR performance may not be ensured. Different from above, under constant modulus (CM) and inequality spectral constraints, we maximize the worst-case SINR within the target aspect angles(TAAs) to satisfy the robustness requirement, while the spectral constraints ensure spectral compatibility by limiting the energy spectral density(ESD) below the predefined threshold. This problem is challenging due to the non-smoothness of max–min design and multiple inequality constraints. Noting that exact penalty terms are suitable for solving inequality constraints, and CM constraints satisfying the complex-circle manifold, we propose the Max-Min-Exact Penalized Product Manifold (MM-EP2M) method. First, auxiliary variables are used to address the non-smoothness of max–min design, transforming it into a minimization problem. Next, exact penalty terms are constructed to remove inequality constraints, and the problem is then projected onto the Product-Complex-Circle-Euclidean Manifold (PC2EM), thus transforming it into an unconstrained problem. Finally, the parallel simplified quasi-Newton (PSQN) method is divided. The dataset obtained by illuminating a T-72 tank is used to validate the performance. Simulation results demonstrate that the proposed method has following advantages: (i) improves SINR by at least 4.49 dB while controlling energy spectral density exactly; (ii) provides SINR performance that meets requirements for each angle within TAAs.
频谱兼容MIMO雷达波形设计扩展目标检测
频谱兼容MIMO雷达波形设计是扩展目标探测的关键。现有方法要么在目标角度(TAAs)内最大化最坏SINR而忽略了光谱兼容性,要么通过最大化平均SINR来考虑光谱兼容性,但可能无法保证最坏SINR性能。与上述不同的是,在恒模(CM)和不等式谱约束下,我们在目标向角(TAAs)内最大化最坏SINR以满足鲁棒性要求,而谱约束通过将能量谱密度(ESD)限制在预定义阈值以下来确保谱兼容性。由于最大最小设计的非光滑性和多重不等式约束,该问题具有挑战性。注意到精确惩罚项适用于求解不等式约束和CM约束满足复圆流形,我们提出了最大-最小精确惩罚积流形(MM-EP2M)方法。首先,使用辅助变量来解决最大最小设计的非光滑性问题,将其转化为最小化问题。其次,构造精确惩罚项来消除不等式约束,然后将问题投影到积复圆欧氏流形(PC2EM)上,从而将其转化为无约束问题。最后,对并行简化拟牛顿(PSQN)方法进行了划分。通过对T-72坦克进行照明获得的数据集来验证其性能。仿真结果表明,该方法具有以下优点:(1)在精确控制能谱密度的同时,使信噪比提高4.49 dB以上;(ii)提供满足taa内每个角度要求的SINR性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信