{"title":"Borell's inequality and mean width of random polytopes via discrete inequalities","authors":"David Alonso-Gutiérrez, Luis C. García-Lirola","doi":"10.1016/j.jco.2025.101993","DOIUrl":null,"url":null,"abstract":"<div><div>Borell's inequality states the existence of a positive absolute constant <span><math><mi>C</mi><mo>></mo><mn>0</mn></math></span> such that for every <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span><span><span><span><math><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>≤</mo><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac></mrow></msup><mo>≤</mo><mi>C</mi><mfrac><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></mfrac><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>,</mo></math></span></span></span> whenever <em>X</em> is a random vector uniformly distributed on any convex body <span><math><mi>K</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is the standard canonical basis in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In this paper, we will prove a discrete version of this inequality, which will hold whenever <em>X</em> is a random vector uniformly distributed on <span><math><mi>K</mi><mo>∩</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any convex body <span><math><mi>K</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> containing the origin in its interior. We will also make use of such discrete version to obtain discrete inequalities from which we can recover the estimate <span><math><mi>E</mi><mi>w</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo><mo>∼</mo><mi>w</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>log</mi><mo></mo><mi>N</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>)</mo></math></span> for any convex body <em>K</em> containing the origin in its interior, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is the centrally symmetric random polytope <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>=</mo><mtext>conv</mtext><mo>{</mo><mo>±</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><mo>±</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></math></span> generated by independent random vectors uniformly distributed on <em>K</em>, <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> is the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-centroid body of <em>K</em> for any <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>w</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> denotes the mean width.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101993"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000718","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Borell's inequality states the existence of a positive absolute constant such that for every whenever X is a random vector uniformly distributed on any convex body and is the standard canonical basis in . In this paper, we will prove a discrete version of this inequality, which will hold whenever X is a random vector uniformly distributed on for any convex body containing the origin in its interior. We will also make use of such discrete version to obtain discrete inequalities from which we can recover the estimate for any convex body K containing the origin in its interior, where is the centrally symmetric random polytope generated by independent random vectors uniformly distributed on K, is the -centroid body of K for any , and denotes the mean width.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.