Radek Hranický, Ondřej Ondryáš, Adam Horák, Petr Pouč, Kamil Jeřábek, Tomáš Ebert, Jan Polišenský
{"title":"A multi-dimensional DNS domain intelligence dataset for cybersecurity research","authors":"Radek Hranický, Ondřej Ondryáš, Adam Horák, Petr Pouč, Kamil Jeřábek, Tomáš Ebert, Jan Polišenský","doi":"10.1016/j.dib.2025.112062","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating sophistication and frequency of cyber threats require advanced solutions in cybersecurity research. Particularly, phishing and malware detection have become increasingly reliant on data-driven approaches. This paper presents a unique dataset precisely curated to bolster research in network security, focusing on the classification and analysis of internet domains. This dataset contains information for over a million internet domains with detailed labels distinguishing between phishing, malware, and benign traffic.</div><div>Our dataset is distinctive due to its comprehensive compilation of metainformation derived from multiple sources, including DNS records, TLS handshakes and certificates, WHOIS and RDAP services, IP-related data, and geolocation details. Such rich, multi-dimensional data allows for a deeper analysis and understanding of domain characteristics that are critical in identifying and categorizing cyber threats. The integration of information from diverse sources enhances the dataset's utility, providing a holistic view of each domain's footprint and its potential security implications.</div><div>The data is formatted in JSON, ensuring versatility, accessibility for researchers, and easy integration into various analytical tools and platforms, facilitating ease of use in statistical analysis, machine learning, and other computational analyses. Our dataset's extensive volume and variety surpass any known publicly available resources in this field, making it an invaluable asset for both academic and practical development and testing of cybersecurity solutions.</div><div>This paper thoroughly describes the value of the data, details the comprehensive methodology employed in the collection process, and provides a clear description of the data structure. Such documentation is crucial for ensuring that the dataset can be effectively utilized and reapplied in a variety of research contexts. Its structured format and the broad range of included features are critical for developing robust cybersecurity solutions and can be adapted for emerging threats.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"62 ","pages":"Article 112062"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235234092500784X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating sophistication and frequency of cyber threats require advanced solutions in cybersecurity research. Particularly, phishing and malware detection have become increasingly reliant on data-driven approaches. This paper presents a unique dataset precisely curated to bolster research in network security, focusing on the classification and analysis of internet domains. This dataset contains information for over a million internet domains with detailed labels distinguishing between phishing, malware, and benign traffic.
Our dataset is distinctive due to its comprehensive compilation of metainformation derived from multiple sources, including DNS records, TLS handshakes and certificates, WHOIS and RDAP services, IP-related data, and geolocation details. Such rich, multi-dimensional data allows for a deeper analysis and understanding of domain characteristics that are critical in identifying and categorizing cyber threats. The integration of information from diverse sources enhances the dataset's utility, providing a holistic view of each domain's footprint and its potential security implications.
The data is formatted in JSON, ensuring versatility, accessibility for researchers, and easy integration into various analytical tools and platforms, facilitating ease of use in statistical analysis, machine learning, and other computational analyses. Our dataset's extensive volume and variety surpass any known publicly available resources in this field, making it an invaluable asset for both academic and practical development and testing of cybersecurity solutions.
This paper thoroughly describes the value of the data, details the comprehensive methodology employed in the collection process, and provides a clear description of the data structure. Such documentation is crucial for ensuring that the dataset can be effectively utilized and reapplied in a variety of research contexts. Its structured format and the broad range of included features are critical for developing robust cybersecurity solutions and can be adapted for emerging threats.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.