Mustafa Ozan Duman, Ibrahim Isik, Mehmet Bilal Er, Mehmet Emin Tagluk, Esme Isik
{"title":"Predictive Modeling of Bacteria-Based Nanonetwork Performance Using Simulation-Driven Machine Learning and Genetic Algorithm Optimization","authors":"Mustafa Ozan Duman, Ibrahim Isik, Mehmet Bilal Er, Mehmet Emin Tagluk, Esme Isik","doi":"10.1002/adts.202501275","DOIUrl":null,"url":null,"abstract":"Bacteria-based nanonetwork (BN) offers a biologically inspired solution for enabling information exchange between nanomachines (NMs) in environments where traditional communication methods are ineffective. This study presents a 2D simulation model of a BN system that captures the chemotactic behavior of a single <i>Escherichia coli</i> (<i>E. coli</i>) bacterium navigating from a transmitter (TX) toward a receiver (RX) under varying environmental conditions. Key parameters, which are chemoattractant release rate (<i>Q</i>), TX-RX distance (<i>d</i>), and bacterial lifespan (<span data-altimg=\"/cms/asset/ab54f192-1340-42bd-bd6d-dadc5e52a6da/adts70141-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70141-math-0001.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,10\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"t Subscript d e a t h\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,2,3,4,5\" data-semantic-content=\"6,7,8,9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70141:adts70141-math-0001\" display=\"inline\" location=\"graphic/adts70141-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,10\" data-semantic-role=\"latinletter\" data-semantic-speech=\"t Subscript d e a t h\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,2,3,4,5\" data-semantic-content=\"6,7,8,9\" data-semantic-parent=\"11\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">e</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">a</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">h</mi></mrow></msub>$t_{death}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), are systematically varied to evaluate their impact on communication performance, measured in terms of reach time and success rate. To enable accurate performance prediction without the need for computationally expensive repeated simulations, an analytical model is constructed using various machine learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Hyperparameters of MLP are optimized using a Genetic Algorithm (GA), significantly enhancing predictive accuracy and training stability. The results demonstrate the effectiveness of integrating dynamic simulation with data-driven modeling and hyperparameter optimization to represent complex system behavior. This framework offers valuable design insights for BN system development and supports the creation of efficient, scalable nanonetworks.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"17 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria-based nanonetwork (BN) offers a biologically inspired solution for enabling information exchange between nanomachines (NMs) in environments where traditional communication methods are ineffective. This study presents a 2D simulation model of a BN system that captures the chemotactic behavior of a single Escherichia coli (E. coli) bacterium navigating from a transmitter (TX) toward a receiver (RX) under varying environmental conditions. Key parameters, which are chemoattractant release rate (Q), TX-RX distance (d), and bacterial lifespan (), are systematically varied to evaluate their impact on communication performance, measured in terms of reach time and success rate. To enable accurate performance prediction without the need for computationally expensive repeated simulations, an analytical model is constructed using various machine learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Hyperparameters of MLP are optimized using a Genetic Algorithm (GA), significantly enhancing predictive accuracy and training stability. The results demonstrate the effectiveness of integrating dynamic simulation with data-driven modeling and hyperparameter optimization to represent complex system behavior. This framework offers valuable design insights for BN system development and supports the creation of efficient, scalable nanonetworks.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics