Saloua Benhmammouch, Coraline Borowczyk, Clara Pierrot-Blanchet, Thibault Barouillet, Florent Murcy, Sébastien Dussaud, Marina Blanc, Camille Blériot, Tiit Örd, Lama Habbouche, Nathalie Vaillant, Yohan Gerber, Clément Cochain, Emmanuel L. Gautier, Florent Ginhoux, Edward B. Thorp, Erik A. L. Biessen, Judith C. Sluimer, Susanna Bodoy, Manuel Palacin, Béatrice Bailly-Maitre, Minna U. Kaikkonen, Laurent Yvan-Charvet
{"title":"Slc7a7 licenses macrophage glutaminolysis for restorative functions in atherosclerosis","authors":"Saloua Benhmammouch, Coraline Borowczyk, Clara Pierrot-Blanchet, Thibault Barouillet, Florent Murcy, Sébastien Dussaud, Marina Blanc, Camille Blériot, Tiit Örd, Lama Habbouche, Nathalie Vaillant, Yohan Gerber, Clément Cochain, Emmanuel L. Gautier, Florent Ginhoux, Edward B. Thorp, Erik A. L. Biessen, Judith C. Sluimer, Susanna Bodoy, Manuel Palacin, Béatrice Bailly-Maitre, Minna U. Kaikkonen, Laurent Yvan-Charvet","doi":"10.1038/s42255-025-01354-2","DOIUrl":null,"url":null,"abstract":"Atherosclerosis is a life-threatening condition characterized by chronic inflammation of the arterial wall. Atherosclerotic plaque macrophages are key players at the site of disease, where metabolic reprogramming dictates the progression of pathogenesis. Here we show that reduced macrophage glutaminase activity is related to glutaminase (GLS)-1 and not GLS2 expression. While glutamine synthetase serves as a metabolic rheostat controlling nutrient flux into cells in vitro, macrophage restorative functions in the context of atherosclerosis relies more heavily on glutamine influx. Enhanced glutamine flux is largely mediated by the SLC7A7 exchanger in macrophages: Slc7a7-silenced macrophages have reduced glutamine influx and GLS1-dependent glutaminolysis, impeding downstream signalling involved in macrophage restorative functions. In vivo, macrophage-specific deletion of Slc7a7 accelerates atherosclerosis in mice with more complex necrotic core composition. Finally, cell-intrinsic regulation of glutaminolysis drives macrophage metabolic and transcriptional rewiring in atherosclerosis by diverting exogenous Gln flux to balance remodelling and restorative functions. Thus, we uncover a role of SLC7A7-dependent glutamine uptake upstream of glutaminolysis in atherosclerotic plaque development and stability. The authors provide a comprehensive characterization of how glutamine uptake and utilization regulate macrophage function in atherosclerosis.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1924-1938"},"PeriodicalIF":20.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s42255-025-01354-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis is a life-threatening condition characterized by chronic inflammation of the arterial wall. Atherosclerotic plaque macrophages are key players at the site of disease, where metabolic reprogramming dictates the progression of pathogenesis. Here we show that reduced macrophage glutaminase activity is related to glutaminase (GLS)-1 and not GLS2 expression. While glutamine synthetase serves as a metabolic rheostat controlling nutrient flux into cells in vitro, macrophage restorative functions in the context of atherosclerosis relies more heavily on glutamine influx. Enhanced glutamine flux is largely mediated by the SLC7A7 exchanger in macrophages: Slc7a7-silenced macrophages have reduced glutamine influx and GLS1-dependent glutaminolysis, impeding downstream signalling involved in macrophage restorative functions. In vivo, macrophage-specific deletion of Slc7a7 accelerates atherosclerosis in mice with more complex necrotic core composition. Finally, cell-intrinsic regulation of glutaminolysis drives macrophage metabolic and transcriptional rewiring in atherosclerosis by diverting exogenous Gln flux to balance remodelling and restorative functions. Thus, we uncover a role of SLC7A7-dependent glutamine uptake upstream of glutaminolysis in atherosclerotic plaque development and stability. The authors provide a comprehensive characterization of how glutamine uptake and utilization regulate macrophage function in atherosclerosis.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.