Bifunctional Probes Reveal the Rules of Intracellular Ether Lipid Transport.

IF 16.9
Kristin Böhlig, Juan Manuel Iglesias-Artola, Antonino Asaro, H Mathilda Lennartz, Anna C Link, Björn Drobot, André Nadler
{"title":"Bifunctional Probes Reveal the Rules of Intracellular Ether Lipid Transport.","authors":"Kristin Böhlig, Juan Manuel Iglesias-Artola, Antonino Asaro, H Mathilda Lennartz, Anna C Link, Björn Drobot, André Nadler","doi":"10.1002/anie.202513360","DOIUrl":null,"url":null,"abstract":"<p><p>Ether glycerophospholipids bear a long chain alcohol attached via an alkyl or vinyl ether bond at the sn1 position of the glycerol backbone. Ether lipids play a significant role in physiology and human health. However, their cellular functions remain largely unknown due to a lack of tools for identifying their subcellular localization and interacting proteins. Here, we address this methodological gap by synthesizing minimally modified bifunctional ether lipid probes by introducing diazirine and alkyne groups. To interrogate the subcellular kinetics of intracellular ether lipid transport in mammalian cells, we used a combination of fluorescence imaging, machine learning-assisted image analysis, and mathematical modelling. We find that alkyl-linked ether lipids are transported up to twofold faster than vinyl-linked species (plasmalogens), pointing to yet undiscovered cellular lipid transport machinery able to distinguish between linkage types differing by as little as two hydrogen atoms. We find that ether lipid transport predominantly occurs via non-vesicular pathways, with varying contributions from vesicular mechanisms between cell types. Altogether, our results suggest that differential recognition of alkyl- and vinyl ether lipids by lipid transfer proteins contributes to their distinct biological functions. In the future, the probes reported here will enable studying ether lipid biology in much greater detail through identification of interacting proteins and in-depth characterization of intracellular ether lipid dynamics.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202513360"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202513360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ether glycerophospholipids bear a long chain alcohol attached via an alkyl or vinyl ether bond at the sn1 position of the glycerol backbone. Ether lipids play a significant role in physiology and human health. However, their cellular functions remain largely unknown due to a lack of tools for identifying their subcellular localization and interacting proteins. Here, we address this methodological gap by synthesizing minimally modified bifunctional ether lipid probes by introducing diazirine and alkyne groups. To interrogate the subcellular kinetics of intracellular ether lipid transport in mammalian cells, we used a combination of fluorescence imaging, machine learning-assisted image analysis, and mathematical modelling. We find that alkyl-linked ether lipids are transported up to twofold faster than vinyl-linked species (plasmalogens), pointing to yet undiscovered cellular lipid transport machinery able to distinguish between linkage types differing by as little as two hydrogen atoms. We find that ether lipid transport predominantly occurs via non-vesicular pathways, with varying contributions from vesicular mechanisms between cell types. Altogether, our results suggest that differential recognition of alkyl- and vinyl ether lipids by lipid transfer proteins contributes to their distinct biological functions. In the future, the probes reported here will enable studying ether lipid biology in much greater detail through identification of interacting proteins and in-depth characterization of intracellular ether lipid dynamics.

Abstract Image

双功能探针揭示细胞内醚脂质转运的规律。
醚类甘油磷脂在甘油主链的sn1位置通过烷基或乙烯醚键连接一个长链醇。醚类脂质在人体生理和健康中起着重要作用。然而,由于缺乏识别它们的亚细胞定位和相互作用蛋白的工具,它们的细胞功能在很大程度上仍然未知。在这里,我们通过引入重氮嘧啶和炔基合成最低限度修饰的双功能醚脂质探针来解决这一方法上的差距。为了研究哺乳动物细胞内脂质转运的亚细胞动力学,我们结合了荧光成像、机器学习辅助图像分析和数学建模。我们发现烷基连接的醚类脂的运输速度比乙烯基连接的物种(磷脂原)快两倍,这表明尚未发现的细胞脂质运输机制能够区分仅仅两个氢原子不同的连接类型。我们发现醚类脂质转运主要通过非囊泡途径发生,不同细胞类型的囊泡机制有不同的贡献。总之,我们的研究结果表明,脂质转移蛋白对烷基醚和乙烯醚脂质的不同识别有助于它们不同的生物学功能。在未来,本文报道的探针将通过鉴定相互作用蛋白和深入表征细胞内醚脂质动力学,使醚脂质生物学研究更加详细。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信