Optical fiber magnetic field sensing based on an optoelectronic oscillator with a prestressed and pre-magnetized enhanced-responsivity structure.

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.569195
Pufeng Gao, Shiyi Cai, Donghui Li, Beilei Wu, Mingjian Zhu, Hui Chen, Desheng Chen, Muguang Wang
{"title":"Optical fiber magnetic field sensing based on an optoelectronic oscillator with a prestressed and pre-magnetized enhanced-responsivity structure.","authors":"Pufeng Gao, Shiyi Cai, Donghui Li, Beilei Wu, Mingjian Zhu, Hui Chen, Desheng Chen, Muguang Wang","doi":"10.1364/AO.569195","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a magnetic field responsivity-enhancement sensing system, which comprises a magnetic field enhanced-responsivity fiber Bragg grating (FBG) sensing unit and a microwave photonic demodulation system utilizing an optoelectronic oscillator (OEO). The enhanced-responsivity structure integrates a mechanical stress coupling mechanism and a magnetic field bias, applying both prestress and pre-magnetization to a giant magnetostrictive material to improve its magnetostrictive coefficient. The FBG is mechanically bonded to this structure, forming a highly responsive magnetic field sensing unit. The OEO-based demodulating system consists of a feedback oscillation loop incorporating a broadband light source, an optical modulator, a dispersion medium, and a photodetector. It converts the wavelength shift of the FBG induced by the magnetic field into a corresponding oscillation frequency shift of the OEO, enabling precise magnetic field measurement through frequency monitoring. Experimental results demonstrate that the magnetic field responsivity of the enhanced sensor reaches 3920 Hz/mT, which is 16.3 times higher than that of the unenhanced configuration. A magnetic field resolution of 0.255 µT and an accuracy of 51 µT are achieved. The proposed magnetic field sensing system significantly enhances responsivity without increasing the complexity of the demodulation architecture. This work provides a novel, to our knowledge, and practical approach for high-accuracy magnetic field measurement in engineering applications.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7594-7601"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.569195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a magnetic field responsivity-enhancement sensing system, which comprises a magnetic field enhanced-responsivity fiber Bragg grating (FBG) sensing unit and a microwave photonic demodulation system utilizing an optoelectronic oscillator (OEO). The enhanced-responsivity structure integrates a mechanical stress coupling mechanism and a magnetic field bias, applying both prestress and pre-magnetization to a giant magnetostrictive material to improve its magnetostrictive coefficient. The FBG is mechanically bonded to this structure, forming a highly responsive magnetic field sensing unit. The OEO-based demodulating system consists of a feedback oscillation loop incorporating a broadband light source, an optical modulator, a dispersion medium, and a photodetector. It converts the wavelength shift of the FBG induced by the magnetic field into a corresponding oscillation frequency shift of the OEO, enabling precise magnetic field measurement through frequency monitoring. Experimental results demonstrate that the magnetic field responsivity of the enhanced sensor reaches 3920 Hz/mT, which is 16.3 times higher than that of the unenhanced configuration. A magnetic field resolution of 0.255 µT and an accuracy of 51 µT are achieved. The proposed magnetic field sensing system significantly enhances responsivity without increasing the complexity of the demodulation architecture. This work provides a novel, to our knowledge, and practical approach for high-accuracy magnetic field measurement in engineering applications.

基于预应力预磁化增强响应结构的光电子振荡器的光纤磁场传感。
本文提出了一种磁场响应度增强传感系统,该系统包括一个磁场响应度增强光纤布拉格光栅(FBG)传感单元和一个利用光电振荡器(OEO)的微波光子解调系统。该结构将机械应力耦合机制与磁场偏压相结合,对超磁致伸缩材料施加预应力和预磁化,提高其磁致伸缩系数。FBG与该结构机械结合,形成一个高响应的磁场传感单元。基于oeo的解调系统包括一个反馈振荡环路,该环路包含一个宽带光源、一个光调制器、一个色散介质和一个光电探测器。它将磁场引起的FBG的波长位移转换为OEO相应的振荡频移,通过频率监测实现精确的磁场测量。实验结果表明,增强后的传感器磁场响应率达到3920 Hz/mT,比未增强的传感器提高了16.3倍。实现了0.255µT的磁场分辨率和51µT的精度。提出的磁场传感系统在不增加解调结构复杂性的情况下显著提高了响应性。据我们所知,这项工作为工程应用中的高精度磁场测量提供了一种新颖而实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信