Deep learning-enhanced holographic wavefront sensor for high-order aberration sensing.

Applied optics Pub Date : 2025-09-20 DOI:10.1364/AO.574070
Ming Liu, Bing Dong
{"title":"Deep learning-enhanced holographic wavefront sensor for high-order aberration sensing.","authors":"Ming Liu, Bing Dong","doi":"10.1364/AO.574070","DOIUrl":null,"url":null,"abstract":"<p><p>A deep learning-enhanced holographic wavefront sensor (DLHWS) is proposed to overcome the limitations of conventional holographic modal wavefront sensors (HMWS). Traditional HMWS, based on the second-moment-intensity (SMI-HMWS), suffers from measurement inaccuracies due to speckle noise from kinoform computer-generated holograms (CGHs) and restricted measurable modes. The DLHWS utilizes deep neural networks to process multiple biased images generated by a CGH, either a lightweight convolutional neural network (CNN) for modal coefficient estimation (DLHWS-c) or a UNet for direct phase map reconstruction (DLHWS-p). Simulations and experiments demonstrate that DLHWS significantly improves wavefront sensing accuracy and capability to detect high-order aberrations. DLHWS-c offers superior inference speed and high accuracy for low-order modes. In contrast, DLHWS-p delivers higher precision in capturing high-order aberrations comprising hundreds of modes induced by atmospheric turbulence but requires greater computational resources.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 27","pages":"8130-8138"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.574070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A deep learning-enhanced holographic wavefront sensor (DLHWS) is proposed to overcome the limitations of conventional holographic modal wavefront sensors (HMWS). Traditional HMWS, based on the second-moment-intensity (SMI-HMWS), suffers from measurement inaccuracies due to speckle noise from kinoform computer-generated holograms (CGHs) and restricted measurable modes. The DLHWS utilizes deep neural networks to process multiple biased images generated by a CGH, either a lightweight convolutional neural network (CNN) for modal coefficient estimation (DLHWS-c) or a UNet for direct phase map reconstruction (DLHWS-p). Simulations and experiments demonstrate that DLHWS significantly improves wavefront sensing accuracy and capability to detect high-order aberrations. DLHWS-c offers superior inference speed and high accuracy for low-order modes. In contrast, DLHWS-p delivers higher precision in capturing high-order aberrations comprising hundreds of modes induced by atmospheric turbulence but requires greater computational resources.

基于深度学习的高阶像差全息传感器。
针对传统全息模态波前传感器的局限性,提出了一种深度学习增强全息波前传感器(DLHWS)。基于秒矩强度(SMI-HMWS)的传统HMWS存在测量不准确的问题,这主要是由于计算机生成全息图(CGHs)的散斑噪声和测量模式的限制。DLHWS利用深度神经网络来处理由CGH生成的多偏置图像,无论是用于模态系数估计的轻量级卷积神经网络(CNN) (DLHWS-c)还是用于直接相位图重建的UNet (DLHWS-p)。仿真和实验表明,DLHWS显著提高了波前检测精度和高阶像差的检测能力。DLHWS-c为低阶模式提供了卓越的推理速度和高精度。相比之下,DLHWS-p在捕获由大气湍流引起的数百种模式的高阶像差方面提供了更高的精度,但需要更多的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信