Composite coating with engineered microparticles for multiband infrared stealth and efficient radiative heat dissipation.

Applied optics Pub Date : 2025-09-20 DOI:10.1364/AO.574080
Bowei Xie, Jian Zhan, Mu Du
{"title":"Composite coating with engineered microparticles for multiband infrared stealth and efficient radiative heat dissipation.","authors":"Bowei Xie, Jian Zhan, Mu Du","doi":"10.1364/AO.574080","DOIUrl":null,"url":null,"abstract":"<p><p>The fundamental conflict between infrared stealth and thermal management, where suppressing thermal emission for camouflage inevitably causes detrimental heat accumulation, poses a long-standing challenge in modern military technology. This work resolves this paradox through a bottom-up design of a particle composite coating, where complex spectral selectivity is engineered at the single-particle level. We computationally designed and validated a multilayer spherical particle, consisting of a <i>C</i><i>a</i><i>M</i><i>g</i>(<i>C</i><i>O</i><sub>3</sub>)<sub>2</sub> shell, a <i>V</i><i>O</i><sub>2</sub> inner shell, and a Ge core, embedded within a polyethylene (PE) binder. The synergistic roles of the materials allow for precise spectral control: <i>C</i><i>a</i><i>M</i><i>g</i>(<i>C</i><i>O</i><sub>3</sub>)<sub>2</sub> provides a primary emission peak in the 6-7 µm range, <i>V</i><i>O</i><sub>2</sub> broadens this non-atmospheric window for enhanced heat dissipation, and the Ge layer simultaneously shields absorption in the infrared stealth bands and boosts absorption in the VIS-NIR spectrum. The optimized coating achieves a high average emissivity of 0.6471 in the VIS-NIR and 0.5091 in the 5-8 µm band for effective thermal radiation, while maintaining exceptionally low emissivity in the atmospheric window bands (SWIR: 0.2326, MWIR: 0.3208, and LWIR: 0.0915). Simulated thermal imaging demonstrates superior stealth performance. This coating offers a scalable and effective strategy for developing next-generation materials compatible with both multiband stealth and heat dissipation requirements.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 27","pages":"8011-8018"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.574080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental conflict between infrared stealth and thermal management, where suppressing thermal emission for camouflage inevitably causes detrimental heat accumulation, poses a long-standing challenge in modern military technology. This work resolves this paradox through a bottom-up design of a particle composite coating, where complex spectral selectivity is engineered at the single-particle level. We computationally designed and validated a multilayer spherical particle, consisting of a CaMg(CO3)2 shell, a VO2 inner shell, and a Ge core, embedded within a polyethylene (PE) binder. The synergistic roles of the materials allow for precise spectral control: CaMg(CO3)2 provides a primary emission peak in the 6-7 µm range, VO2 broadens this non-atmospheric window for enhanced heat dissipation, and the Ge layer simultaneously shields absorption in the infrared stealth bands and boosts absorption in the VIS-NIR spectrum. The optimized coating achieves a high average emissivity of 0.6471 in the VIS-NIR and 0.5091 in the 5-8 µm band for effective thermal radiation, while maintaining exceptionally low emissivity in the atmospheric window bands (SWIR: 0.2326, MWIR: 0.3208, and LWIR: 0.0915). Simulated thermal imaging demonstrates superior stealth performance. This coating offers a scalable and effective strategy for developing next-generation materials compatible with both multiband stealth and heat dissipation requirements.

具有多波段红外隐身和高效辐射散热的工程微粒复合涂层。
红外隐身与热管理之间的根本冲突是现代军事技术长期面临的挑战,其中抑制伪装的热发射不可避免地会导致有害的热量积累。这项工作通过自下而上的粒子复合涂层设计解决了这一悖论,在单粒子水平上设计了复杂的光谱选择性。我们通过计算设计并验证了一种多层球形颗粒,该颗粒由CaMg(CO3)2壳层、VO2内壳层和Ge核组成,嵌入聚乙烯(PE)粘合剂中。材料的协同作用允许精确的光谱控制:CaMg(CO3)2提供6-7µm范围内的主发射峰,VO2拓宽了非大气窗口以增强散热,Ge层同时屏蔽红外隐身波段的吸收并增强VIS-NIR光谱的吸收。优化后的涂层在可见光-近红外波段的平均发射率为0.6471,在有效热辐射的5-8µm波段的平均发射率为0.5091,而在大气窗口波段保持极低的发射率(SWIR: 0.2326, MWIR: 0.3208, LWIR: 0.0915)。模拟热成像显示了优越的隐身性能。这种涂层为开发兼容多波段隐身和散热要求的下一代材料提供了可扩展和有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信