SiamDA: a detail-attentive Siamese network with infrared optical saliency for pixel-level UAV tracking.

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.569136
Shu-Chang Wang, Kun Qian, Jinzheng You, Shang Xinghao
{"title":"SiamDA: a detail-attentive Siamese network with infrared optical saliency for pixel-level UAV tracking.","authors":"Shu-Chang Wang, Kun Qian, Jinzheng You, Shang Xinghao","doi":"10.1364/AO.569136","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of unmanned aerial vehicle (UAV) technology, establishing effective management systems for unmanned aerial vehicles has become increasingly important. Tracking small UAVs in complex environments using infrared imagery is a crucial yet challenging task, owing to limited target visibility and significant background clutter. Further, existing feature extraction methods struggle to effectively capture pixel-level infrared UAV signatures. Therefore, this paper introduces SiamDA, a detail-attentive anchor-free Siamese tracker designed to capture more infrared spectral details to enhance the representation of weak UAV targets. First, a detail-attentive network that employs deformable convolutions to capture fine-grained features, along with a Taylor-difference-inspired edge enhancement module to sharpen boundaries and reinforce geometric shapes of small UAVs. Then, a normalized Wasserstein distance loss and a dynamic template update scheme are integrated to improve tracking robustness. Evaluations on public near-infrared UAV datasets indicate that SiamDA attains an average precision (<i>P</i><sub>5</sub>) of more than 80%, surpassing state-of-the-art trackers trained on the same dataset.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7586-7593"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.569136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of unmanned aerial vehicle (UAV) technology, establishing effective management systems for unmanned aerial vehicles has become increasingly important. Tracking small UAVs in complex environments using infrared imagery is a crucial yet challenging task, owing to limited target visibility and significant background clutter. Further, existing feature extraction methods struggle to effectively capture pixel-level infrared UAV signatures. Therefore, this paper introduces SiamDA, a detail-attentive anchor-free Siamese tracker designed to capture more infrared spectral details to enhance the representation of weak UAV targets. First, a detail-attentive network that employs deformable convolutions to capture fine-grained features, along with a Taylor-difference-inspired edge enhancement module to sharpen boundaries and reinforce geometric shapes of small UAVs. Then, a normalized Wasserstein distance loss and a dynamic template update scheme are integrated to improve tracking robustness. Evaluations on public near-infrared UAV datasets indicate that SiamDA attains an average precision (P5) of more than 80%, surpassing state-of-the-art trackers trained on the same dataset.

SiamDA:一个细节关注的Siamese网络,具有红外光学显著性,用于像素级无人机跟踪。
随着无人机技术的快速发展,建立有效的无人机管理系统变得越来越重要。由于目标能见度有限和背景杂波明显,在复杂环境中使用红外图像跟踪小型无人机是一项至关重要但具有挑战性的任务。此外,现有的特征提取方法难以有效捕获像素级红外无人机特征。因此,本文介绍了SiamDA,一种细节关注的无锚连体跟踪器,旨在捕获更多的红外光谱细节,以增强弱无人机目标的表征。首先,采用可变形卷积捕获细粒度特征的细节关注网络,以及泰勒差分启发的边缘增强模块来锐化边界并增强小型无人机的几何形状。然后,结合归一化Wasserstein距离损失和动态模板更新方案提高跟踪鲁棒性。对公共近红外无人机数据集的评估表明,SiamDA的平均精度(P5)超过80%,超过了在相同数据集上训练的最先进的跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信