VO2-based reconfigurable metamaterial enabling switchable single-dual-band asymmetric transmission at terahertz frequencies.

Applied optics Pub Date : 2025-09-10 DOI:10.1364/AO.572124
Xianhua Yin, Junrong Su, Huo Zhang
{"title":"VO<sub>2</sub>-based reconfigurable metamaterial enabling switchable single-dual-band asymmetric transmission at terahertz frequencies.","authors":"Xianhua Yin, Junrong Su, Huo Zhang","doi":"10.1364/AO.572124","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenge of dynamically controlling the operating bands of terahertz wave polarization conversion, we propose a tunable terahertz metamaterial device capable of switching its asymmetric transmission between single-band and dual-band modes. The device consists of a top layer of gold and vanadium dioxide, separated from the bottom layer by a polyimide spacer layer. The bottom layer is a mirror-symmetric and 90°-rotated configuration of the top structure. Leveraging vanadium dioxide's phase transition property from an insulating to a metallic state upon heating enables the tunability of incident terahertz waves. In the metallic state, the structure exhibits pronounced single-band asymmetric transmission, with a transmission coefficient <i>T</i><sub>yx</sub> reaching 0.85 at 1.54 THz, while <i>T</i><sub>xy</sub> remains at 0.06. In the insulating state, dual-band asymmetric transmission is observed, with peak <i>T</i><sub>yx</sub> values of 0.786 at 1.45 THz and 0.783 at 2.0 THz, and corresponding <i>T</i><sub>xy</sub> values of 0.06 and 0.07, respectively. Analysis of the structural surface currents reveals that the structure excites asymmetric dipole current resonance, which enables cross-coupling between the incident electric field and induced magnetic field, resulting in asymmetric transmission. The introduction of the coupled-mode theory abstracts the metamaterial as a coupled dual-resonator system, thereby providing further insights into the physical mechanism of dual-band polarization conversion. This tunable asymmetric transmission device presents a promising approach for expanding the applications of filters and tunable optoelectronic devices.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 26","pages":"7807-7816"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.572124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenge of dynamically controlling the operating bands of terahertz wave polarization conversion, we propose a tunable terahertz metamaterial device capable of switching its asymmetric transmission between single-band and dual-band modes. The device consists of a top layer of gold and vanadium dioxide, separated from the bottom layer by a polyimide spacer layer. The bottom layer is a mirror-symmetric and 90°-rotated configuration of the top structure. Leveraging vanadium dioxide's phase transition property from an insulating to a metallic state upon heating enables the tunability of incident terahertz waves. In the metallic state, the structure exhibits pronounced single-band asymmetric transmission, with a transmission coefficient Tyx reaching 0.85 at 1.54 THz, while Txy remains at 0.06. In the insulating state, dual-band asymmetric transmission is observed, with peak Tyx values of 0.786 at 1.45 THz and 0.783 at 2.0 THz, and corresponding Txy values of 0.06 and 0.07, respectively. Analysis of the structural surface currents reveals that the structure excites asymmetric dipole current resonance, which enables cross-coupling between the incident electric field and induced magnetic field, resulting in asymmetric transmission. The introduction of the coupled-mode theory abstracts the metamaterial as a coupled dual-resonator system, thereby providing further insights into the physical mechanism of dual-band polarization conversion. This tunable asymmetric transmission device presents a promising approach for expanding the applications of filters and tunable optoelectronic devices.

基于vo2的可重构超材料,可在太赫兹频率下实现可切换的单-双波段不对称传输。
为了解决动态控制太赫兹波偏振转换工作频带的挑战,我们提出了一种可调谐太赫兹超材料器件,能够在单波段和双带模式之间切换其不对称传输。该装置由金和二氧化钒的顶层组成,由聚酰亚胺间隔层与底层分离。底层是顶部结构的镜像对称和90°旋转配置。利用二氧化钒在加热时从绝缘状态到金属状态的相变特性,可以实现入射太赫兹波的可调性。在金属态下,该结构表现出明显的单波段不对称透射,在1.54 THz时透射系数Tyx达到0.85,而Txy保持在0.06。在绝缘状态下,观察到双波段不对称传输,在1.45 THz和2.0 THz处,Tyx峰值分别为0.786和0.783,对应的Txy值分别为0.06和0.07。对结构表面电流的分析表明,该结构激发了不对称偶极子电流共振,使入射电场和感应磁场之间产生交叉耦合,导致不对称传输。耦合模理论的引入将超材料抽象为一个耦合的双谐振系统,从而为双波段偏振转换的物理机制提供了进一步的见解。这种可调谐非对称传输器件为扩展滤波器和可调谐光电器件的应用提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信