High-sensitivity MOEMS gyroscope utilizing the sub-wavelength grating-waveguide mode coupling effect.

Applied optics Pub Date : 2025-08-20 DOI:10.1364/AO.566563
Li Jin, Wenqiang Sun, RuoXi Li, XinRui Jia, Shangzhou Guo, KunYang Xie, MengWei Li
{"title":"High-sensitivity MOEMS gyroscope utilizing the sub-wavelength grating-waveguide mode coupling effect.","authors":"Li Jin, Wenqiang Sun, RuoXi Li, XinRui Jia, Shangzhou Guo, KunYang Xie, MengWei Li","doi":"10.1364/AO.566563","DOIUrl":null,"url":null,"abstract":"<p><p>Micro-electro-mechanical system (MEMS) gyroscopes based on the Coriolis principle have numerous potential applications, including industrial automation, motion control, inertial navigation, and automotive systems. In this paper, we present a novel (to our knowledge) micro-opto-electro-mechanical system (MOEMS) gyroscope design based on the grating-waveguide mode coupling effect. This diffraction phenomenon enables highly sensitive displacement detection, even nanoscale shifts in the grating elements induce a dramatic change in optical diffraction efficiency, exhibiting anomalous diffraction behavior. Using RSoft software, we systematically simulate and investigate the influence of sub-wavelength grating parameters on diffraction efficiency and determine the optimal geometric configuration. Furthermore, we conduct a comprehensive tolerance analysis to evaluate the impact of fabrication accuracy on diffraction intensity. Finally, we develop a Simulink-based system model for the gyroscope. The designed system achieves a structural sensitivity of 0.09 nm/°/s, an optical diffraction sensitivity of 0.679 mW/nm, and a photoelectric conversion sensitivity of 44.5 mV/mW, yielding a total sensitivity of 2.72 mV/°/s. The proposed sub-wavelength grating MOEMS gyroscope not only addresses critical limitations of conventional MEMS gyroscopes but also demonstrates strong potential for inertial-grade MEMS gyroscopes with unprecedented precision.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 24","pages":"7107-7114"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.566563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-electro-mechanical system (MEMS) gyroscopes based on the Coriolis principle have numerous potential applications, including industrial automation, motion control, inertial navigation, and automotive systems. In this paper, we present a novel (to our knowledge) micro-opto-electro-mechanical system (MOEMS) gyroscope design based on the grating-waveguide mode coupling effect. This diffraction phenomenon enables highly sensitive displacement detection, even nanoscale shifts in the grating elements induce a dramatic change in optical diffraction efficiency, exhibiting anomalous diffraction behavior. Using RSoft software, we systematically simulate and investigate the influence of sub-wavelength grating parameters on diffraction efficiency and determine the optimal geometric configuration. Furthermore, we conduct a comprehensive tolerance analysis to evaluate the impact of fabrication accuracy on diffraction intensity. Finally, we develop a Simulink-based system model for the gyroscope. The designed system achieves a structural sensitivity of 0.09 nm/°/s, an optical diffraction sensitivity of 0.679 mW/nm, and a photoelectric conversion sensitivity of 44.5 mV/mW, yielding a total sensitivity of 2.72 mV/°/s. The proposed sub-wavelength grating MOEMS gyroscope not only addresses critical limitations of conventional MEMS gyroscopes but also demonstrates strong potential for inertial-grade MEMS gyroscopes with unprecedented precision.

利用亚波长光栅-波导模式耦合效应的高灵敏度MOEMS陀螺仪。
基于科里奥利原理的微机电系统(MEMS)陀螺仪具有许多潜在的应用,包括工业自动化,运动控制,惯性导航和汽车系统。在本文中,我们提出了一种新的(据我们所知的)基于光栅-波导模式耦合效应的微光电机械系统(MOEMS)陀螺仪设计。这种衍射现象可以实现高灵敏度的位移检测,即使光栅元件的纳米级位移也会引起光学衍射效率的急剧变化,表现出异常的衍射行为。利用RSoft软件系统地模拟和研究了亚波长光栅参数对衍射效率的影响,确定了最优的几何构型。此外,我们进行了全面的公差分析,以评估制造精度对衍射强度的影响。最后,建立了基于simulink的陀螺仪系统模型。该系统的结构灵敏度为0.09 nm/°/s,光学衍射灵敏度为0.679 mW/nm,光电转换灵敏度为44.5 mV/mW,总灵敏度为2.72 mV/°/s。提出的亚波长光栅MEMS陀螺仪不仅解决了传统MEMS陀螺仪的关键局限性,而且具有前所未有的精度,显示了惯性级MEMS陀螺仪的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信