Neural-network-based multi-spectral thermometry and emissivity reconstruction in cavity high-temperature environments.

Applied optics Pub Date : 2025-09-01 DOI:10.1364/AO.567549
Xinyu Mao, Qi Xie
{"title":"Neural-network-based multi-spectral thermometry and emissivity reconstruction in cavity high-temperature environments.","authors":"Xinyu Mao, Qi Xie","doi":"10.1364/AO.567549","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a neural-network-assisted framework for accurate radiation thermometry in high-temperature cavities, overcoming challenges from unknown emissivity and multi-reflection effects. The method combines Monte Carlo ray-tracing with deep learning through: (1) physics-informed training data including diffuse/specular reflections, (2) alternating neural networks for decoupled temperature/emissivity prediction, and (3) full multi-reflection modeling. Validated with zirconia in a graphite cavity within the 1273-1673 K temperature range and 2-16 µm spectral range, it achieves 0.7% temperature error (9 K, compared to real temperature) and 0.05-0.1 emissivity error in 2-16 µm, outperforming first-order methods (neglecting multiple reflections) by 5%-27% (peak at 2 µm) in emissivity reconstruction. The framework maintains <1<i>%</i> error, with only 10 spectral channels and tolerates 1% intensity noise (<1.8<i>%</i> variation), enabling reliable thermometry in low-emissivity materials like alloys and ceramics where conventional methods may fail.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 25","pages":"7304-7314"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.567549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a neural-network-assisted framework for accurate radiation thermometry in high-temperature cavities, overcoming challenges from unknown emissivity and multi-reflection effects. The method combines Monte Carlo ray-tracing with deep learning through: (1) physics-informed training data including diffuse/specular reflections, (2) alternating neural networks for decoupled temperature/emissivity prediction, and (3) full multi-reflection modeling. Validated with zirconia in a graphite cavity within the 1273-1673 K temperature range and 2-16 µm spectral range, it achieves 0.7% temperature error (9 K, compared to real temperature) and 0.05-0.1 emissivity error in 2-16 µm, outperforming first-order methods (neglecting multiple reflections) by 5%-27% (peak at 2 µm) in emissivity reconstruction. The framework maintains <1% error, with only 10 spectral channels and tolerates 1% intensity noise (<1.8% variation), enabling reliable thermometry in low-emissivity materials like alloys and ceramics where conventional methods may fail.

腔体高温环境下基于神经网络的多光谱测温与发射率重建。
本研究提出了一种神经网络辅助框架,用于高温腔体中的精确辐射测温,克服了未知发射率和多反射效应的挑战。该方法将蒙特卡罗光线追踪与深度学习相结合,通过以下方式实现:(1)基于物理的训练数据(包括漫反射/镜面反射),(2)用于解耦温度/发射率预测的交替神经网络,以及(3)全多反射建模。在1273-1673 K温度范围和2-16µm光谱范围内,用氧化锆在石墨腔中进行验证,与实际温度相比,该方法的温度误差为0.7% (9 K), 2-16µm发射率误差为0.05-0.1,在发射率重建方面优于一阶方法(忽略多次反射)5%-27%(峰值在2µm)。该框架保持了%的误差,只有10个光谱通道,并容忍1%的强度噪声(%变化),能够在合金和陶瓷等低发射率材料中实现可靠的温度测量,而传统方法可能无法实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信