Deep learning approach for flow visualization in background-oriented schlieren.

Applied optics Pub Date : 2025-09-20 DOI:10.1364/AO.572042
Viren S Ram, Tullio de Rubeis, Dario Ambrosini, Rajshekhar Gannavarpu
{"title":"Deep learning approach for flow visualization in background-oriented schlieren.","authors":"Viren S Ram, Tullio de Rubeis, Dario Ambrosini, Rajshekhar Gannavarpu","doi":"10.1364/AO.572042","DOIUrl":null,"url":null,"abstract":"<p><p>Diffractive optical element-based background-oriented schlieren (BOS) is a popular technique for quantitative flow visualization. This technique relies on encoding spatial density variations of the test medium in the form of an optical fringe pattern; and hence, its accuracy is directly influenced by the quality of fringe pattern demodulation. We introduce a robust deep learning-assisted subspace method, which enables reliable fringe pattern demodulation even in the presence of severe noise and uneven fringe distortions in recorded BOS fringe patterns. The method's effectiveness in handling fringe pattern artifacts is demonstrated via rigorous numerical simulations. Furthermore, the method's practical applicability is experimentally validated using real-world BOS images obtained from a liquid diffusion process.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 27","pages":"7938-7947"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.572042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffractive optical element-based background-oriented schlieren (BOS) is a popular technique for quantitative flow visualization. This technique relies on encoding spatial density variations of the test medium in the form of an optical fringe pattern; and hence, its accuracy is directly influenced by the quality of fringe pattern demodulation. We introduce a robust deep learning-assisted subspace method, which enables reliable fringe pattern demodulation even in the presence of severe noise and uneven fringe distortions in recorded BOS fringe patterns. The method's effectiveness in handling fringe pattern artifacts is demonstrated via rigorous numerical simulations. Furthermore, the method's practical applicability is experimentally validated using real-world BOS images obtained from a liquid diffusion process.

面向背景纹影流动可视化的深度学习方法。
基于衍射光学元件的背景定向纹影(BOS)是一种流行的流量定量显示技术。该技术依赖于以光学条纹图案的形式编码测试介质的空间密度变化;因此,条纹图解调的质量直接影响其精度。我们引入了一种鲁棒的深度学习辅助子空间方法,即使在记录的BOS条纹模式存在严重噪声和不均匀条纹畸变的情况下,也能实现可靠的条纹模式解调。通过严格的数值模拟验证了该方法处理条纹伪影的有效性。此外,利用从液体扩散过程中获得的真实BOS图像,实验验证了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信