Minimizing positioning error through strategic LED arrangement: circular layout superiority in ANN-based VLP.

Applied optics Pub Date : 2025-09-10 DOI:10.1364/AO.568213
Ajit Kumar, Nishant Sharan, Vipul Dixit, S K Ghorai, R Karibasappa, K P Ravikumar, Amresh Kumar
{"title":"Minimizing positioning error through strategic LED arrangement: circular layout superiority in ANN-based VLP.","authors":"Ajit Kumar, Nishant Sharan, Vipul Dixit, S K Ghorai, R Karibasappa, K P Ravikumar, Amresh Kumar","doi":"10.1364/AO.568213","DOIUrl":null,"url":null,"abstract":"<p><p>This research introduces a fingerprint-based artificial neural network approach for visible light positioning systems. The study evaluates four different light emitting diode (LED) configurations-square, rectangular, triangular, and circular-within a 5<i>m</i>×5<i>m</i>×3<i>m</i> indoor environment to determine which arrangement delivers the highest positioning accuracy. The analysis employs a receiver moving in a circular path within the receiver plane for the estimation of positioning accuracy across the entire trajectory. Comprehensive simulation results, including the cumulative distribution function, frequency distribution of positioning errors, and error magnitudes at different receiver locations, demonstrate that the mean positioning errors (in centimeters) are 15.2893, 12.4548, 52.5016, and 9.8749 for square, rectangular, triangular, and circular configurations, respectively. The findings indicate that the circular arrangement yields superior performance with minimal positioning error. This configuration creates consistent signal strength gradients across all directions, eliminating potential \"dead zones\" and maximizing line-of-sight connections between LEDs and the receiver regardless of position. The superior performance of the circular configuration underscores the significant impact of geometric arrangement on positioning accuracy, even when utilizing identical numbers of LEDs and signal processing techniques.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":"64 26","pages":"7755-7767"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.568213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces a fingerprint-based artificial neural network approach for visible light positioning systems. The study evaluates four different light emitting diode (LED) configurations-square, rectangular, triangular, and circular-within a 5m×5m×3m indoor environment to determine which arrangement delivers the highest positioning accuracy. The analysis employs a receiver moving in a circular path within the receiver plane for the estimation of positioning accuracy across the entire trajectory. Comprehensive simulation results, including the cumulative distribution function, frequency distribution of positioning errors, and error magnitudes at different receiver locations, demonstrate that the mean positioning errors (in centimeters) are 15.2893, 12.4548, 52.5016, and 9.8749 for square, rectangular, triangular, and circular configurations, respectively. The findings indicate that the circular arrangement yields superior performance with minimal positioning error. This configuration creates consistent signal strength gradients across all directions, eliminating potential "dead zones" and maximizing line-of-sight connections between LEDs and the receiver regardless of position. The superior performance of the circular configuration underscores the significant impact of geometric arrangement on positioning accuracy, even when utilizing identical numbers of LEDs and signal processing techniques.

策略性排列LED以减少定位误差:基于人工神经网络的VLP的圆形布局优势。
介绍了一种基于指纹的可见光定位系统人工神经网络方法。该研究在5m×5m×3m室内环境中评估了四种不同的发光二极管(LED)配置——方形、矩形、三角形和圆形,以确定哪种配置能提供最高的定位精度。该分析采用在接收机平面内沿圆形路径移动的接收机来估计整个轨迹的定位精度。综合仿真结果,包括累积分布函数、定位误差频率分布和不同接收机位置的误差幅度,表明正方形、矩形、三角形和圆形配置的平均定位误差(厘米)分别为15.2893、12.4548、52.5016和9.8749。研究结果表明,圆形布局在定位误差最小的情况下具有优越的性能。这种配置在所有方向上创造了一致的信号强度梯度,消除了潜在的“死区”,并最大限度地提高了led和接收器之间的视线连接,无论位置如何。圆形结构的优越性能强调了几何排列对定位精度的重大影响,即使使用相同数量的led和信号处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信