{"title":"Surface-based and Shape-informed U-fiber Atlasing for Robust Superficial White Matter Connectivity Analysis.","authors":"Yuan Li, Xinyu Nie, Jianwei Zhang, Yonggang Shi","doi":"10.1007/978-3-031-72069-7_40","DOIUrl":null,"url":null,"abstract":"<p><p>Superficial white matter (SWM) U-fibers contain considerable structural connectivity in the human brain; however, related studies are not well-developed compared to the well-studied deep white matter (DWM). Conventionally, SWM U-fiber is obtained through DWM tracking, which is inaccurate on the cortical surface. The significant variability in the cortical folding patterns of the human brain renders a conventional template-based atlas unsuitable for accurately mapping U-fibers within the thin layer of SWM beneath the cortical surface. Recently, new surface-based tracking methods have been developed to reconstruct more complete and reliable U-fibers. To leverage surface-based U-fiber tracking methods, we propose to create a surface-based U-fiber dictionary using high-resolution diffusion MRI (dMRI) data from the Human Connectome Project (HCP). We first identify the major U-fiber bundles and then build a dictionary containing subjects with high groupwise consistency of major U-fiber bundles. Finally, we propose a shape-informed U-fiber atlasing method for robust SWM connectivity analysis. Through experiments, we demonstrate that our shape-informed atlasing method can obtain anatomically more accurate U-fiber representations than state-of-the-art atlas. Additionally, our method is capable of restoring incomplete U-fibers in low-resolution dMRI, thus helping better characterize SWM connectivity in clinical studies such as the Alzheimer's Disease Neuroimaging Initiative (ADNI).</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15002 ","pages":"422-432"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72069-7_40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Superficial white matter (SWM) U-fibers contain considerable structural connectivity in the human brain; however, related studies are not well-developed compared to the well-studied deep white matter (DWM). Conventionally, SWM U-fiber is obtained through DWM tracking, which is inaccurate on the cortical surface. The significant variability in the cortical folding patterns of the human brain renders a conventional template-based atlas unsuitable for accurately mapping U-fibers within the thin layer of SWM beneath the cortical surface. Recently, new surface-based tracking methods have been developed to reconstruct more complete and reliable U-fibers. To leverage surface-based U-fiber tracking methods, we propose to create a surface-based U-fiber dictionary using high-resolution diffusion MRI (dMRI) data from the Human Connectome Project (HCP). We first identify the major U-fiber bundles and then build a dictionary containing subjects with high groupwise consistency of major U-fiber bundles. Finally, we propose a shape-informed U-fiber atlasing method for robust SWM connectivity analysis. Through experiments, we demonstrate that our shape-informed atlasing method can obtain anatomically more accurate U-fiber representations than state-of-the-art atlas. Additionally, our method is capable of restoring incomplete U-fibers in low-resolution dMRI, thus helping better characterize SWM connectivity in clinical studies such as the Alzheimer's Disease Neuroimaging Initiative (ADNI).